[1]
L. Berke, S. N. Patnaik, P. L. N. Murthy: Optimum design of aerospace structural components using neural networks. Computers & Structures, 48(1993), pp.1001-1010.
DOI: 10.1016/0045-7949(93)90435-g
Google Scholar
[2]
M. Papadrakakis, N.D. Lagaros, V. Plevris. Design optimization of steel structures considering uncertainties. Engineering Structures, 27 (2005), p.1408–1418.
DOI: 10.1016/j.engstruct.2005.04.002
Google Scholar
[3]
M. Papadrakakis, N. D. Lagaros. Reliability-based structural optimization using neural networks and Monte Carlo simulation. Computer Methods in Applied Mechanics and Engineering, 191(2002), pp.3491-3507.
DOI: 10.1016/s0045-7825(02)00287-6
Google Scholar
[4]
A. SriVidya, R. Ranganathan. Reliability based optimal design of reinforced concrete frames. Computers & Structures, 57 (1995) pp.651-661.
DOI: 10.1016/0045-7949(95)00049-m
Google Scholar
[5]
R. I. Stephens, A. Fatemi, R. R. Stephens, H. O. Fuchs. Metal Fatigue in Engineering, seconded. John Wiley & Sons, Inc., New York (2001).
Google Scholar
[6]
R. M. Wetzel. Smooth specimen simulation of fatigue behavior of notches. Journal of materials, JMLSA, 3(1968).
Google Scholar
[7]
T. H. Topper, R. M. Wetzel. Neuber rule applied to fatigue of notched specimen. Journal of materials (1969).
Google Scholar
[8]
P. C. Paris, F. Erdogen. A critical analysis of crack propagation law. Journal of Basic Engineering , 85(1963), p.528–534.
Google Scholar
[9]
M. A. Miner. Cumulative damage in fatigue. Journal of Applied Mechanics, 67(1945), pp.159-164.
Google Scholar
[10]
J. Deng. Structural reliability analysis for implicit performance function using radial basis function network. International Journal of Solids and Structures, 43(2006), pp.3255-3268.
DOI: 10.1016/j.ijsolstr.2005.05.055
Google Scholar