[1]
Information on http://www.porcelainenamel.com/props.htm.
Google Scholar
[2]
D.A. Jones. in: Principles and Prevention of Corrosion, edited by Prentice Hall, New Jersey (1996).
Google Scholar
[3]
K. Barcova, M. Mashlan, R. Zboril, J. Filip, J. Podjuklova, K. Hrabovska, P. Schaaf. Phase composition of steel-enamel interfaces: Effects of chemical pre-treatment. Surf. Coat. Tech. Vol. 201 (2006) pp.1836-1844.
DOI: 10.1016/j.surfcoat.2006.03.015
Google Scholar
[4]
F. Tang, G. Chen, R. K. Brow, J. S. Volz, M. L. Koenigstein. Corrosion resistance and mechanism of steel rebar coated with three types of enamel. Corros. Sci. Vol. 59 (2012) pp.157-168.
DOI: 10.1016/j.corsci.2012.02.024
Google Scholar
[5]
F. Tang, G. Chen, J. S. Volz, R. K. Brow, and M. Koenigstein. Corrosion behavior of enamel coated steel rebar by EIS. Adv. Mater. Res. Vol. 450-451 (2012) pp.445-453.
DOI: 10.4028/scientific5/amr.450-451.445
Google Scholar
[6]
D. Yan, S. Reis, X. Tao, G. Chen, R. K. Brow, M. Koenigstein. Effect of chemically reactive enamel coating on bonding strength at steel/mortar interface. Constr. Bldg. Mater. Vol. 28 (2012) pp.512-518.
DOI: 10.1016/j.conbuildmat.2011.08.075
Google Scholar
[7]
NRC. International Critical Tables, National Research Council, Washington, D.C., McGraw-Hill, 1927, p.116.
Google Scholar
[8]
ASTM. Standard Test Method for Impact Resistance of Pipeline Coatings (Falling Weight Test). American Society of Testing Methods (ASTM), G14-04; 2004.
Google Scholar
[9]
C. Zhong, X. Tang, Y.F. Cheng, corrosion of steel under the defected coating studied by localized electrochemical impedance spectroscopy. Electrochim. Acta, Vol. 53 (2008) pp.4740-4747.
DOI: 10.1016/j.electacta.2008.02.014
Google Scholar
[10]
C. Perez, A. Collazo, M. Izquierdo, P. Merino, X.R. Novoa, Comparative study between galvanized steel and three duplex systems submitted to a weathering cyclic test. Corros. Sci. 44 (2002) pp.481-500.
DOI: 10.1016/s0010-938x(01)00070-1
Google Scholar
[11]
K. Saravanan, S. Sathiyanarayanan, S. Muralidharan, S. Syed Azim, G. Venkatachari. Performance evaluation of polyaniline pigmented epoxy coating for corrosion protection of steel in concrete environment. Prog. Org. Coat. Vol. 59 (2007) pp.160-167.
DOI: 10.1016/j.porgcoat.2007.03.002
Google Scholar
[12]
S.J. Ford, J.D. Shane, and T.O. Mason, Assignment of features in impedance spectra of the cement-paste/steel system. Cem. Concr. Res. Vol. 28 (1998) pp.1737-1751.
DOI: 10.1016/s0008-8846(98)00156-2
Google Scholar
[13]
W. Zhang, X. Chen, P. Yin, Z. Xu, B. Han, J. Wang. EIS study on the deterioration process of organic coatings under immersion and different cyclic wet-dry ratios. Appl. Mech. Mater. Vol. 161 (2012) pp.58-66.
DOI: 10.4028/www.scientific.net/amm.161.58
Google Scholar
[14]
ASTM. Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete. American Society of Testing Methods (ASTM), C876-09; 2009.
Google Scholar
[15]
S. Sathiyanarayanan, S. Syed Azim, G. Venkatachari. Corrosion protection coating containing polyaniline glass flake composite for steel. Electrochim. Acta. Vol. 53 (2008) pp.2087-2094.
DOI: 10.1016/j.electacta.2007.09.015
Google Scholar
[16]
M.A. Dominguez-Crespo, A. Garcia-Murillo, A.M. Torres-Huerta, F.J. Carrillo-Romo, E. Onofre-Bustamante, C. Yanez-Zamora. Characterization of ceramic sol-gel coatings as an alternative chemical conversion treatment on commercial carbon steel. Electrochim. Acta. Vol. 54 (2009) pp.2932-2940.
DOI: 10.1016/j.electacta.2008.11.023
Google Scholar
[17]
W. Chen, R. Du, C. Ye, Y. Zhu, C. Lin. Study on the corrosion behavior of reinforcing steel in simulated concrete pore solutions using in situ Raman spectroscopy assisted by electrochemical techniques. Electrochim. Acta. Vol. 55 (2010) pp.5677-5682.
DOI: 10.1016/j.electacta.2010.05.003
Google Scholar
[18]
B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani. Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim. Acta. Vol. 55 (2010) pp.6218-6227.
DOI: 10.1016/j.electacta.2009.10.065
Google Scholar
[19]
Y. Zhang, Y. Shao, T. Zhang, G. Meng, F. Wang. The effect of epoxy coating containing emeraldine base and hydrofluoric acid doped polyaniline on the corrosion protection of AZ91D magnesium alloy. Corros. Sci. Vol. 53 (2011) pp.3747-3755.
DOI: 10.1016/j.corsci.2011.07.021
Google Scholar
[20]
H.H. Hassan, E. Abdelghani, M.A. Amin. Inhibition of mild steel corrosion in hydrochloric acid solution by triazole derivatives: Part I. Polarization and EIS studies. Electrochim. Acta. Vol. 52 (2007) pp.6359-6366.
DOI: 10.1016/j.electacta.2007.04.046
Google Scholar
[21]
R. Vlasak, I. Klueppel, G. Grundmeier, Combined EIS and FTIR-ATR study of water uptake and diffusion in polymer film on semiconducting electrodes, Electrochim. Acta. Vol. 52 (2007) pp.8075-8080.
DOI: 10.1016/j.electacta.2007.07.003
Google Scholar
[22]
J.M. Hu, J.Q. Zhang, C.N. Cao, Determination of water uptake and diffusion of Cl- ion in epoxy primer on aluminum alloys in NaCl solution by electrochemical impedance spectroscopy, Prog. Org. Coat. Vol. 46 (2003) pp.273-279.
DOI: 10.1016/s0300-9440(03)00010-9
Google Scholar