Solving the Linear Time-Fractional Wave Equation by Generalized Differential Transform Method

Article Preview

Abstract:

In this paper, the generalized differential transform method is implemented for solving time-fractional wave equations in fluid mechanics. This method is based on the two-dimensional differential transform method (DTM) and generalized Taylor’s formula. The results reveal the method is feasible and convenient for handling approximate solutions of time-fractional partial differential equations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

4476-4480

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Momani: Chaos Solitons Fract. 28 (4) (2006) 930-937.

Google Scholar

[2] S. Momani, Z. Odibat: Phys. Lett. A 355 (2006) 271-279.

Google Scholar

[3] X. H. Chen: Chinese Physics Letters, 24(1): (2007) 1989-1991

Google Scholar

[4] J. H. He: Comput. Methods Appl. Mech. Engrg. 167 (1998) 57-68.

Google Scholar

[5] Z. Odibat, S. Momani: Int. J. Nonlinear Sci. Numer. Simul. 7 (1) (2006) 15-27.

Google Scholar

[6] N. Bildik, A. Konuralp, F. Bek, S. Kucukarslan: Appl. Math. Comput. 172 (2006) 551-567.

Google Scholar

[7] Z. Odibat, N. Shawafeh: Appl. Math. Comput. 186 (2007) 286-293.

Google Scholar

[8] I. Podlubny: Frac. Calc. Appl. Anal. 5 (2002) 367-386.

Google Scholar

[9] M. Caputo: Part II, J. Roy. Astr. Soc. 13 (1967) 529-539.

Google Scholar

[10] Z. Odibat, N. Shawagfeh: Appl. Math. Comput. 186 (2007) 286-293.

Google Scholar

[11] S.Momani, Z.Odibat: Appl. Math. Comput. 220 (2008) 85-95

Google Scholar

[12] H. Jafari, S. Momani: Phys. Lett. A 370 (2007) 388-396.

Google Scholar