A Perturbation Procedure for Limit Cycle and Heteroclinic Connection Analysis of Certain Self-Excited Oscillator

Article Preview

Abstract:

A perturbation procedure, in which the elliptic perturbation method and the hyperbolic perturbation method are applied, is presented for predicting heteroclinic connection of limit cycle or self-excited ocsillator. The limit cycle can be analytically constructed first by the elliptic perturbation method after Hopf bifurcation, in which the amplitude of limit cycle can be controlled by the modulus of elliptic functions. The heteroclinic trajectories, which are formed by the heteroclinic connection of limit cycle, can also be constructed by similar perturbation procedure but adopting the hyperbolic functions instead of elliptic functions. And the criterion of heteroclinic connection is given in the perturbation procedure. A typical self-excited oscillator is studied in detail to assess the present method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

4529-4532

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.H. Nayfeh, B. Balachandran: Applied Nonlinear Dynamics, Analytical, Computational, and Experimental Methods (Wiley, USA 1995).

Google Scholar

[2] S.H. Chen, Y.Y. Chen, K.Y. Sze: J. Sound and Vibration Vol. 322 (2009), p.381.

Google Scholar

[3] Z. Xu, H.S.Y. Chan, K.W. Chung: Nonlinear Dynamics Vol. 11 (1996), p.213.

Google Scholar

[4] H.S.Y. Chan, K.W. Chung, Z. Xu: J. Sound and Vibration Vol. 206 (1997), p.589.

Google Scholar

[5] M. Belhaq: Nonlinear Dynamics Vol. 18 (1999), p.303.

Google Scholar

[6] M. Belhaq, F. Lakrad: Chaos Solitons & Fractals Vol. 11 (2000), p.2251.

DOI: 10.1016/s0960-0779(99)00144-7

Google Scholar

[7] S. H. Chen, Y. K. Cheung: Nonlinear Dynamics Vol. 12 (1997), p.199.

Google Scholar

[8] M. Belhaq, B. Fiedler, F. Lakrad: Nonlinear Dynamics Vol. 23 (2000), p.67.

Google Scholar

[9] Y. V. Mikhlin: J. Sound and Vibration Vol. 230 (2000), p.971.

Google Scholar

[10] Y.V. Mikhlin, G.V. Manucharyan: Chaos Solitons & Fractals Vol. 16 (2003), p.299.

Google Scholar

[11] Q. Zhang, W. Wang, W. Li: Chinese Phys. Lett. Vol. 25 (2008), p. (1905).

Google Scholar

[12] Y. M. Zhang, Q. S. Lu: Communications in Nonlinear Science and Numerical Simulation Vol. 8 (2003), p.1.

Google Scholar

[13] Y.Y. Cao, K.W. Chung, J. Xu: Nonlinear Dynamics Vol. 64 (2011), p.221.

Google Scholar

[14] S. H. Chen, Y.Y. Chen, K.Y. Sze: SCIENCE CHINA: Tech. Scis. Vol. 53 (2010), p.692.

Google Scholar

[15] Y.Y. Chen, S.H. Chen: Nonlinear Dynamics Vol. 58 (2009), p.417.

Google Scholar

[16] Y.Y. Chen, S.H. Chen, K.Y. Sze: Acta Mechanica Sinica Vol. 25 (2009), p.721.

Google Scholar

[17] S. H. Chen, Y. K. Cheung: J. Sound and Vibration Vol. 192 (1996), p.453.

Google Scholar

[18] M. Abramowitz, I. A. Stegun: Handbook of Mathematical Functions (Dover, USA 1972).

Google Scholar

[19] J. H. Merkin, D. J. Needham: Acta Mechanica Vol. 60 (1986), p.1.

Google Scholar