[1]
X.B. Hu, A (2+1)-dimensional sinh-Gordon equation and its Pfaffian generalization, Phys.Lett. A, 360(2007), 439-447.
DOI: 10.1016/j.physleta.2006.07.031
Google Scholar
[2]
J.L. Zhang and Y.M. Wang, Exact solutions to two nonlinear equations, Acta Physica Sinca, 52(2003), 1574-1578.
Google Scholar
[3]
W.L. Chan and X. Zhang, Symmetries, conservation laws and Hamiltonian structures of the non-isospectral and variable coefficient KdV and MKdV equations, J. Phys. A: Math.Gen., 28(1995), 407-412.
DOI: 10.1088/0305-4470/28/2/016
Google Scholar
[4]
Z.N. Zhu, Soliton-like solutions of generalized KdV equation with external force term, Acta Physica Sinca, 41(1992), 1561-1566.
DOI: 10.7498/aps.41.1561
Google Scholar
[5]
T. Brugarino and P. Pantano, The integration of Burgers and Korteweg-de Vries equations with nonuniformities, Phys. Lett.A, 80(1980), 223-224.
DOI: 10.1016/0375-9601(80)90005-5
Google Scholar
[6]
C. Tian and Redekopp L G, Symmetries and a hierarchy of the general KdV equation, J.Phys.A: Math.Gen., 20(1987), 359-366.
DOI: 10.1088/0305-4470/20/2/021
Google Scholar
[7]
J.F. Zhang and F.Y. Chen, Truncated Expansion Method and New Exact Soliton-like Solution of the General Variable Coefficient KdV equation, Acta Physica Sinca, 50(2001), 1648-1650.
DOI: 10.7498/aps.50.1648
Google Scholar
[8]
D.S. Li and H.Q. Zhang, Improved tanh-function method and the new exact solutions for the general variable coefficient KdV equation and MKdV equation, Acta Physica Sinca, 52(2003), 1569-1573.
DOI: 10.7498/aps.52.1569
Google Scholar
[9]
C. Xiang, Travelling wave solutions of reduced super-KdV equation: A perspective from Lame equation, Applied Mathematics and Computation, 217(2010) 42-47.
DOI: 10.1016/j.amc.2010.05.041
Google Scholar
[10]
Z.T. Fu, S.D. Liu and S.K. Liu, New exact solutions to Kdv equations with variable coefficients or forcing, Applied Mathematics and Mechanics, 25(2004), 73-79.
DOI: 10.1007/bf02437295
Google Scholar
[11]
F.J. Chen and J.F. Zhang, Soliton-like solution for the (2+1)-dimensional variable coefficients Kadomtsev-Petviashvili equation, Acta Armamentar, 24(2003), 389-391.
Google Scholar
[12]
M. Malfliet, E. Wieers, A nonlinear theory of charged-particle stopping in non-idealplasmas, J. Plasma. Phys., 56(1996), 441-443.
Google Scholar
[13]
W. Malfliet, The tanh method: A tool for solving certain classes of nonlinear evolution and wave equations, J. Comput. Appl. Math., 164(2004), 529-541.
DOI: 10.1016/s0377-0427(03)00645-9
Google Scholar
[14]
A.M. Wazwaz, Analytical study on nonlinear variants of the RLW and the PHI-four equation, Commun. Nonlinear Sci. Numer. Simulat., 12(2007), 314-327.
DOI: 10.1016/j.cnsns.2005.03.001
Google Scholar
[15]
J.M. Dye and A. Parker, An inverse scatting scheme for the regularized long-wave equation, J. Math. Phys., 41(2000), 2889-2904.
DOI: 10.1063/1.533278
Google Scholar