One-Dimensional Soil Moisture Simulation Using Ensemble Kalman Filter

Article Preview

Abstract:

Data assimilation is a method which integrates model and observation. In hydrology, ensemble Kalman filter (EnKF) as a sequential data assimilation method is often used to correct model parameters, thus improve the simulated accuracy. In this study, we conduct one numerical experiment to predict soil moisture using the one-dimensional soil moisture system based on ensemble Kalman filter and Simple Biosphere (SiB2) Model at Meilin study area, China. The simulated period is divided into two parts: 0-60h and 60-240h. The results show that EnKF is an efficient method in assimilating the soil moisture, especially in soil surface layer and deep soil layer; in addition, the efficiency of EnKF depends on the selection of initial soil moisture profile. With different initial soil moisture profiles, the performance of EnKF is different at the first few assimilated time, but with time grows, it can improve the simulated accuracy significantly.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

177-180

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Lü, Z. Yu, Y. Zhu, S. Drake, Z. Hao and E. A. Sudicky. Advances in Water Resources, Vol. 34, pp.395-406 (2011).

Google Scholar

[2] H. Lü, Z. Yu, R. Horton, Y. Zhu, Z. Wang, Z. Hao and L. Xiang. Hydrological Process, online (2011).

Google Scholar

[3] A. W. Western and G. Bloschl. J Hydrol, Vol. 217, p.203–224 (1999).

Google Scholar

[4] Z. Yu, H. Lü, Y. Zhu, S. Drake and C. Liang. Hydrol Process, Vol. 24, p.87–95 (2010).

Google Scholar

[5] R. D. Koster, P. A. Dirmeyer, Z. Guo, G. Bonan, E. Chan and P. Cox. Science, p.1138–1141 (2004).

Google Scholar

[6] J. D. Hanson, K. W. Rojas and M. J. Schaffer. Agron J, Vol. 91, p.171–177 (1999).

Google Scholar

[7] H. Lü, Y. Zhu, T. H. Skaggs and Z. Yu. Agric Water Manage, Vol. 96, p.299–306 (2009).

Google Scholar

[8] W. Crow and E. Wood. Advances in Water Resources, Vol. 26, p.137–149 (2003).

Google Scholar

[9] S. A. Margulis, D. McLaughlin, D. Entekhabi and S. Dunne. Water Resources Research, Vol. 38, p.1299 (2002).

Google Scholar

[10] W. Ni-Meister. J Phys Geogr, Vol. 29, p.19–37 (2008).

Google Scholar

[11] X. Li, C. Huang, T. Che, R. Jin, S. Wang, J. Wang, F. Gao, S. Zhang, C. Qiu and C. Wang. Progress in Natural Science, Vol. 17, pp.881-892 (2007).

Google Scholar

[12] R. Daley. Atmospheric Data Analysis. New York: Cambridge University Press, (1991).

Google Scholar

[13] O. Talagrand. Journal of the Meteorological Society of Japan, Vol. 75, pp.191-209 (1997).

Google Scholar

[14] D. McLaughlin. Reviews of Geophysics, Vol. 33, p.977–984 (1995).

Google Scholar

[15] P. J. Sellers, D. A. Randall, G. J. Collatz, J. A. Berry, C. B. Field, D. A. Dazlich, C. Zhang, G. D. Collelo and L. Bounoua. Journal of Climate, Vol. 9, p.676–705 (1995).

DOI: 10.1175/1520-0442(1996)009<0676:arlspf>2.0.co;2

Google Scholar

[16] G. Evensen. Physica D, Vol. 77, pp.8-129 (1994).

Google Scholar

[17] X. Han and X. Li. Remote Sensing of Environment, Vol. 112, p.1434−1449 (2008).

Google Scholar

[18] A. H. Weerts and G. Y. H. E. Serafy. Water Resources Research, Vol. 42, W09403 (2006).

Google Scholar

[19] D. Liu, Z. Yu and H. Lü. Water Science and Engineering, Vol. 3, pp.361-377 (2010).

Google Scholar

[20] A. H. Murphy. Mon. Weather Rev., Vol. 124, p.2353–2369 (1996).

Google Scholar

[21] H. Lü, X. Li, Z. Yu, R. Horton, Y. Zhu, Z. Hao and L. Xiang. Hydrological Process, Vol. 24, p.3648–3660 (2010).

Google Scholar

[22] H. Moradkhani, S. Sorooshian, H.V. Gupta and P. R. Houser. Advances in Water Resources, Vol. 28, p.135–147 (2005).

Google Scholar