Finite Element Analysis of Friction Effect on Deformation Behavior of Copper Rods in a Modified C2S2 Process

Article Preview

Abstract:

The influence of friction on deformation behavior of copper rods during the continuous ECAP process (a modified C2S2 for the processing of rods and wires) was analyzed by using DEFORM-2D finite element method. The effect of friction on the stress and strain distribution, strain homogeneity and the torque-time curves was investigated. In the modified C2S2 process, the effective stress distributions are symmetrically concentrated on the shear plane, but there is an inadequate length of the plastic deformation zone. The effective strain shows a distorted fan shape in the shear deformation zone. As the friction factor increases the distorted fan shape tends to be normal and thinner, indicating that the bigger the friction factor, the more homogeneous the shear deformation. The effective strain is uniform across more than 70% thickness of the specimen. The assumed shear deformation is further divided into three stages, which can be explained by the torque-time curves.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1487-1492

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Z. Valiev, R. K. Islamgaliev, I.V. Alexandrov: Prog. Mater. Sci., Vol. 45 (2000), p.103

Google Scholar

[2] J. Alkorta, M. Rombouts, J. De Messemaeker, L. Froyen, J. Gil Sevillano: Scripta Mater., Vol. 47 (2002), p.13

DOI: 10.1016/s1359-6462(02)00089-1

Google Scholar

[3] J. Y. Huang, Y. T. Zhu, H. Jiang, T. C. Lowe: Acta Mater. , Vol. 49 (2001), p.1497

Google Scholar

[4] Y. Saito, H. Utsunomiya, H. Suzuki, T. Sakai: Scripta Mater., Vol. 42 (2000), p.1139

Google Scholar

[5] J. C. Lee, H. K. Seok, J. Y. Suh: Acta Mater., Vol. 50 (2002), p.4005

Google Scholar

[6] G. J. Raab, R. Z. Valiev, T. C. Lowe, Y. T. Zhu: Mater. Sci. Eng., Vol. A382 (2004), p.30

Google Scholar

[7] P. B. Prangnell, C. Harris, S. M. Roberts: Scripta Mater., Vol.37 (1997), p.983

Google Scholar

[8] Y. Wu, I. Baker: Scripta Mater., Vol. 37 (1997), p.437

Google Scholar

[9] S. J. Oh, S. B. Kang: Mater. Sci. Eng., Vol. A343 (2003), p.107

Google Scholar

[10] S. Xu, G. Zhao, G. Ren, X. Ma: Comput. Mater. Sci., Vol. 44 (2008), p.247

Google Scholar

[11] S. Dumoulin , H. J. Roven , J. C. Werenskiold , H. S. Valberg: Mater. Sci. Eng., Vol. A410-411 (2005), p.248

Google Scholar

[12] S. Xu, G. Zhao, X. Ren, Y. Guan: Mater. Sci. Eng., Vol. A476 (2008), p.281

Google Scholar

[13] W. Wei, W. Zhang, K. X. Wei, Y. Zhong, G. Cheng, J. Hu: Mater. Sci. Eng., Vol. A516 (2009), p.111

Google Scholar

[14] M. Y. Huh, H. J. Choi, J. H. Ok, B. B. Hwang, B. C. Kang: Materials Science Forum, Vol. 475-479 (2005), p.3231

Google Scholar

[15] V. M. Segal: Mater. Sci. Eng., Vol. A197 (1995), p.157

Google Scholar

[16] H. S. Kim: Mater. Sci. Eng., Vol. A315 (2001), p.122

Google Scholar

[17] Y. H. Kim, J. R. Cho, K. S. Kim, H. S. Jeong, S. S. Yoon: J. Mater. Proc. Tech., Vol. 97 (2000), p.153

Google Scholar