Globally Exponential Synchronization for the Genesio-Tesi Chaotic System via Feedback Control with Two States

Article Preview

Abstract:

Based on matrix theory and inequality techniques, feedback control with two states is proposed to realize the globally exponential synchronization of two Genesi-Tesi chaotic systems. Some new sufficient algebraic criteria for the globally exponential synchronization of two chaotic systems are obtained analytically. The controllers here designed have simple structure. Numerical simulations are presented to show the effectiveness of the proposed chaos synchronization scheme.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2298-2301

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. L. Li: Control and Decision Vol. 23(2008), p.593.

Google Scholar

[2] J. G. Jian, Z.W. Tu and H. Yu, in: Computational Intelligence and Software Engineering, edited by IEEE Computer Society, Vol. 1-5 of Proceeding of 2009 International Conference on Computational Intelligence and Software Engineering (2009).

DOI: 10.1109/cise.2009.5364702

Google Scholar

[3] X. H. Zhang and X. F. Liao: Chaos, Solitons and Fractals Vol. 26(2005), p.845.

Google Scholar

[4] U. E. Vincent: Physics Letters A Vol. 343(2005), p.133.

Google Scholar

[5] F. Q. Wang and C. X. Liu: Physica D Vol. 225 (2007), p.55.

Google Scholar

[6] J. H. Park: Chaos, Solitons and Fractals Vol. 34 (2007), p.1154.

Google Scholar

[7] J. H. Park, S. M. Lee and O. M. Kwon: Physics Letters A Vol. 371 (2007), p.263.

Google Scholar

[8] S. Dadras and H. R. Momeni: Chaos, Solitons and Fractals Vol. 42 (2009), p.3140.

Google Scholar

[9] J. H. Park, O. M. Kwon and S. M. Lee: Applied Mathematics and Computation Vol. 196 (2008), p.200.

Google Scholar

[10] G. M. Wang: Physics Letters A Vol. 374 (2010), p.2831.

Google Scholar

[11] Y.G. Yu and H. X. Li: Nonlinear Analysis-Real World Applications Vol. 12 (2011), p.388.

Google Scholar

[12] X. D. Tian and D. C. Lu: Journal of Kunming University of Science and Technology (Science and Technology) Vol. 32 (2007), p.119.

Google Scholar

[13] Y.J. Sun: Physics Letters A Vol. 373 (2009), p.3273.

Google Scholar

[14] Y.Z. Liu and S.M. Fei: Acta Physica Sinica Vol. 54(2005), p.3486.

Google Scholar

[15] Y.Y. Lin, S. J. Ma and C. Y. Zhang: Journal of Dynamics and Control Vol. 8 (2010), p.245.

Google Scholar

[16] M. R. Faieghi and H. Delavari: Commun Nonlinear Sci Numer Simulat Vol. 17 (2012), p.731.

Google Scholar