Ion-Electron Interaction Contribution to the Helmholtz Free Energy for Fully Ionized Hydrogen Plasma

Article Preview

Abstract:

The Padé approximation is a very important description of thermodynamic properties of fully ionized hydrogen at high pressures and temperatures. By comparing of several reported Padé approximants via calculation of the ion-electron interaction contribution to the Helmholtz free energy of the fully ionized hydrogen plasma, we find that Padé approximant proposed by Stolzman gives an unphysical odd local minimal appears at low temperature( ), and gradually fade away with the increase of temperature, implying a prominent limit of low temperature. While Chabrier et al. developed a more reasonable Padé approximant for the contribution of ion-electron interaction on the Helmholtz free energy. Analyses on isotherm curves indicate that the thermodynamic properties of the ion-electron interaction contribution to the Helmholtz free energy described by the revised Padé approximant is very stable at all temperatures and pressures without any unphysical effects at low temperatures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

991-994

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Ebeling and W. Richert, Phys. stat. sol. (b), 128 (1990), p.467.

Google Scholar

[2] G. Chabrier and A.Y. Potekhin, Phys. Rev. E, 128 (1990), p.4941.

Google Scholar

[3] W.J. Nellis, M. Ross and N.C. Holmes, SCHience, 269 (1995), p.249.

Google Scholar

[4] W. Ebeling, A. Forster, V.E. Fortov and V.K. Grynaznov, in: Thermophysical properties of hot dense plasmas, ed. B.G. Teuber VerlagsgesellSCHhaft Stuttgart Leipzig, (1991), p.7.

Google Scholar

[5] M.A. Morales, C. Pierleoni and D.M. Ceperley, Phys. Rev. E, 81, 021202 (2010).

Google Scholar

[6] M.A. Morales, C. Pierleoni, E. Schwegler and D.M. Ceperley, PNAS, 108, 12799 (2010).

Google Scholar

[7] C. Pierleoni, D.M. Ceperley and M. Holzmann, Phys. Rev. Lett, 93, 146402 (2004).

Google Scholar

[8] W. Stolzmann and T. Blöcker, Astron. Astrophys., 314 (1996), pp.1024-1040.

Google Scholar

[9] W. Stolzmann and T. Blöcker, Astron. Astrophys., 361 (2000), p.1152.

Google Scholar

[10] W. Stolzmann and T. Blöcker, Physics Letters A, 221 (1996), pp.99-103.

Google Scholar

[11] W. Stolzmann and W. Ebeling, Physics Letters A, 248 (1998), pp.242-246.

Google Scholar

[12] G. Chabrier and A.Y. Potekhin, Phys. Rev. E, 58 (1998), pp.4941-4949.

Google Scholar

[13] G. Chabrier and A.Y. Potekhin, Phys. Rev. E, 62 (2000), pp.8554-8563.

Google Scholar

[14] S. Ichimaru, H. Iyetomi and S. Tanaka, Phys. Rep, 149 (1987), p.91.

Google Scholar

[15] S. Ichimaru, Rev. Mod. Phys., 54 (1982), p.1017.

Google Scholar

[16] S. Ichimaru, 1990, Strongly Coupled Plasmas Physics, North-Holland Delta Series, Amesterdam.

Google Scholar

[17] S. Ichimaru, 1994, Statistical Plasmas Physics, Vol. II: Condensed Plasmas, Addison-Wesley Publishing Company, Reading, Massachusetts.

Google Scholar

[18] D. Saumon and G. Chabrier, Phys Rev A, 44 (1991), p.5122.

Google Scholar

[19] D. Saumon and G. Chabrier, Phys Rev Lett, 62 (1989), p.2397.

Google Scholar

[20] D. Saumon and G. Chabrier, Phys Rev A, 46 (1992), p. (2084).

Google Scholar