Luffa Sponge as a Sustainable Engineering Material

Article Preview

Abstract:

The paper presents the first scientific study of the stiffness, strength and energy absorption characteristics of the luffa sponge with a view to using it as an alternative sustainable engineering material for various practical applications. A series of compression tests on luffa sponge columns have been carried out. The stress-strain curves show a near constant plateau stress over a long strain range, which is ideal for energy absorption applications. It is found that the luffa sponge material exhibits remarkable stiffness, strength and energy absorption capacity that are comparable to those of some commonly-used metallic cellular materials. These properties are due to its light-weight base material, and its structural hierarchy at several length scales. Empirical formulae have been developed for stiffness, strength, densification strain and specific energy absorption at the macroscopic level by considering the luffa fiber as the base material. A comparative study shows that the luffa sponge material outperforms a variety of traditional engineering materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-8

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Shen, Y. M. Xie, X. Huang, S. Zhou, D. Ruan, Mechanical properties of luffa sponge, J. Mech. Behav. Biomed. Mater., (2012) (in press and available online).

Google Scholar

[2] M. A. Meyers, P. -Y. Chen, M.I. Lopez, Y. Seki, A.Y.M. Lin, Biological materials: a materials science approach, J. Mech. Behav. Biomed. Mater., 4 (2011) 626-657.

Google Scholar

[3] L. J. Bonderer, A. R. Studart, L.J. Gauckler, Bioinspired design and assembly of platelet reinforced polymer films, Science, 319 (2008) 1069-1073.

DOI: 10.1126/science.1148726

Google Scholar

[4] Z. Zhang, Y. Zhang, H. Gao, On optimal hierarchy of load-bearing biological materials, Proc. R. Soc. B, 278 (2011) 519-525.

DOI: 10.1098/rspb.2010.1093

Google Scholar

[5] I. O. Oboh, E. O. Aluyor, Luffa cylindrica - an emerging cash crop, African J. Agr. Res., 4 (2009) 684-688.

Google Scholar

[6] M. J. John, S. Thomas, Biofibres and biocomposites, Carbohydr. Polym., 71 (2008) 343-364.

Google Scholar

[7] K. E. Bal, Y. Bal, Gross morphology and absorption capacity of cell-fibers from the fibrous vascular system of loofah (luffa cylindrica), Text. Res. J., 74 (2004) 241-247.

DOI: 10.1177/004051750407400310

Google Scholar

[8] H. Demir, U. Atikler, D. Balköse, F. TihmInlIoglu, The effect of fiber surface treatments on the tensile and water sorption properties of polypropylene-luffa fiber composites, Compos. Part A, 37 (2006) 447-456.

DOI: 10.1016/j.compositesa.2005.05.036

Google Scholar

[9] I. O. Oboh, E. O. Aluyor, T. O. K. Audu, Application of luffa cylindrica in natural form as biosorbent to removal of divalent metals from aqueous solutions - kinetic and equilibrium study, in: F.S.G. Einschlag (Ed. ) Waste Water - Treatment and Reutilization, InTech, 2011, pp.195-212.

DOI: 10.5772/16150

Google Scholar

[10] Y. Laidani, S. Hanini, G. Henini, Use of fiber luffa cylindrica for waters traitement charged in copper, Study of the possibility of its regeneration by desorption chemical, Energy Procedia, 6 (2001) 381-388.

DOI: 10.1016/j.egypro.2011.05.044

Google Scholar

[11] G. Siqueira, J. Bras, A. Dufresne, Luffa cylindrica as a lignocellulosic source of fiber, microfibrillated cellulose, and cellulose nanocrystals, BioResources, 5 (2010) 727-740.

Google Scholar

[12] M. F. Ashby, A. G. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, H. N. G. Wadley, Metal foams: a design guide, Butterworth-Heinemann, Warrendale, (2000).

DOI: 10.1016/b978-075067219-1/50001-5

Google Scholar

[13] M. Johnsona, S. L. Walterb, B. D. Flinnc, G. Mayerc, Influence of moisture on the mechanical behavior of a natural composite, Acta Biomater., 6 (2010) 2181-2188.

Google Scholar

[14] L. J. Gibson, M. F. Ashby, B. A. Harley, Cellular Materials in Nature and Medicine, Cambridge University Press, Cambridge, (2010).

Google Scholar

[15] M. A. Paglicawan, M. S. Cabillon, R. P. Cerbito, E. O. Santos, Loofah fiber as reinforcement material for composite, Philipp. J. Sci., 134 (2005) 113-120.

Google Scholar

[16] M. Avalle, G. Belingardi, R. Montanini, Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram. Int. J. Impact Eng. 25 (2001) 455-472.

DOI: 10.1016/s0734-743x(00)00060-9

Google Scholar

[17] T. A. Schaedler, A. J. Jacobsen, A. Torrents, A. E. Sorensen, J. Lian, J. R. Greer, L. Valdevit, W. B. Carter, Ultralight metallic microlattices, Science, 334 (2011) 962-965.

DOI: 10.1126/science.1211649

Google Scholar