A Novel Approach for Active Contour Initialization in 3D Medical Image Segmentation

Article Preview

Abstract:

Contour initialization is a big problem of the active contour model. Using the continuous features of the three-dimensional medical image, this paper proposes an initial contour prediction model. There are some changes in the boundary contours of the same object. We attribute these changes to continuous translation and similar deformation, and quantify into the centroid displacement and displacement of the point in the direction of Normal. The curve fitting method is used to predict the centroid displacement and the displacement of the points of the contours, which can provide more accurate prediction of changes in the contour. By predicting the initial contour, we have solved the contour initialization problem of the parametric active contour with external force using vector field convolution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1004-1010

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Kass, A. Witkin and D. Terzopoulos: Int. J. Comput. Vis. Vol. 1 (1987), p.321.

Google Scholar

[2] D. Terzopoulos, A. Witkin and M. Kass: Artif. Intell. Vol. 36 (1988), p.91.

Google Scholar

[3] L. D. Cohen: Image Understanding Vol. 53(2) (1991), p.211.

Google Scholar

[4] V. Caselles, R. Kimmel and G. Sapiro: Int. J. Comput. Vis. Vol. 22(1) (1997), p.61.

Google Scholar

[5] M. Gastaud, M. Barlaud and G. Aubert: IEEE Trans. Circuits Syst. Video Tcchno. Vol. 14(5) (2004), p.726.

DOI: 10.1109/tcsvt.2004.826758

Google Scholar

[6] J. O. Lachaud and A. Montanvert: Med. Image Anal. Vol. 3 (1999), p.187.

Google Scholar

[7] L. Bing and T. A. Scott: IEEE Trans. Image Process. Vol. 16(8) (2007), p. (2096).

Google Scholar

[8] C. Xu and J. L. Prince: IEEE Trans. Image Process. Vol. 7(3) (1998), p.359.

Google Scholar

[9] T. Wenbing: IEEE Trans. Image Process. Vol. 21(1) (2011), p.284.

Google Scholar

[10] W. Yuanquan, L. Lixiong and Z. Hua: IEEE Signal Process. Letters Vol. 17(10) (2010), p.875.

Google Scholar

[11] B. Al-Diri, A. Hunter and D. Steel: IEEE Trans. Medical Image Vol. 28(9) (2009), p.1488.

Google Scholar

[12] G. S. Muralidhar and A. C. Bovik: IEEE Trans. Medical Image Vol. 29(10) (2010), p.1768.

Google Scholar