[1]
I. Daubechies. Orthonormal Bases of Compactly Supported Wavelets. Comm., Pure Applied Math. 1988, XLI, 909.
DOI: 10.1002/cpa.3160410705
Google Scholar
[2]
S. G. Mallat. A Theory of Multiresolution Signal Decomposition: the Wavelet Representation. IEEE Transaction on Pattern Recognition and Machine Intelligence. 1989, vol. 11, no. 7, pp.674-693.
DOI: 10.1109/34.192463
Google Scholar
[3]
I. Daubechies. Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania.1992.
Google Scholar
[4]
S. Mallat. A Wavelet Tour of Signal Processing. Third Edition, Elsevier inc, 2009.
Google Scholar
[5]
A. Kovac, and B. W. Silverman. Extending the Scope of Wavelet Regression Methods by Coefficient-Dependent Thresholding. Journal of American Statistical Association. 2000, 95, 172-183.
DOI: 10.1080/01621459.2000.10473912
Google Scholar
[6]
W. Sweldens. The Lifting Scheme: A Custom-Design Construction of Biorthogonal Wavelets. Appl. Comput. Harmon. Anal. 1996, Vol. 3, No. 2, pp.186-200.
DOI: 10.1006/acha.1996.0015
Google Scholar
[7]
I. Daubechies, I. Guskov, P. Schröder, W. Sweldens. Wavelets on Irregular Point Set. A Phil. Trans. R. Soc. Lond. 1999, 357, 2397–2413
DOI: 10.1093/oso/9780198507161.003.0001
Google Scholar
[8]
B. R. Bakshi, and G. Stephanopoulos. Wave-Net: A Multiresolution, Hierarchical Neural Network with Localized Learning. AICHE Journal. 1993, Vol. 39, No. 1.
DOI: 10.1002/aic.690390108
Google Scholar
[9]
A. A. Safavi, G. W. Barton, and J. A. Romagnoli. On the Choice of Wavelets in a Wave-Net for System Identification. Proceeding Of Asian Control Conference. Tokyo, Japan. 1994, Vol. 1. 77-80.
Google Scholar
[10]
C. Ford, and D. M. Etter. Wavelet Basis Reconstruction of Nonuniformly Sampled Data. IEEE Transaction on Circuits and System-II: Analog and digital signal processing. 1998, Vol. 45, No. 8.
DOI: 10.1109/82.718832
Google Scholar
[11]
A. Iske. Multiresolution Methods in Scattered Data Modelling. Springer-Verlag, Berlin Heidelberg. 2004.
Google Scholar
[12]
M. Shahbazian, S. Shahbazian. Simultaneous Least Squares Wavelet Decomposition for Irregularly Spaced Data. Proceedings of 2012 International Conference On Industrial and Intelligent Information, Vol. 31, pp.233-241.
DOI: 10.4028/www.scientific.net/amm.239-240.1213
Google Scholar
[13]
M. Shahbazian. Multiresolution Denoising for Arbitrarily spaced Data Contaminated with Arbitrary Noise, Ph.D. Thesis, School of Engineering, University of Surrey, UK, (2005)
Google Scholar