Study of Multiple-Kernel Relevance Vector Machine Based on Kernel Alignment

Article Preview

Abstract:

The relevance vector machine (RVM) was a Bayesian framework for learning sparse regression models and classifiers, it used single kernel function to map training data from low dimension sample space to high dimension feature space. The prediction accuracy and generalization of traditional single-kernel RVM (sRVM) were not ideal both in classification and regression, so we constructed homogeneous and heterogeneous multiple kernels function (MKF) by kernel function combination in which we testified the validity of basic kernel function (BKF) and its parameters we employed by kernel alignment (KA), then we acquired optimized multiple-kernel RVM (mRVM). Experiment results on LIBSVM datasets not only indicate that both homogeneous and heterogeneous multiple-kernel RVM we constructed possess lower error rate in classification and smaller root mean square (RMS) in regression than single-kernel RVM, but also prove the effectiveness of kernel alignment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1308-1312

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.E. Tipping: J. Machine Learning Research Vol. 1 (2001), p.211.

Google Scholar

[2] V.N. Vapnik: Statistical Learning Theory (Wiley, New York 1998).

Google Scholar

[3] B. Schoelkopf, A.J. Smola and K.R. Muller: Neural Computation Vol. 10 (1998), p.1299.

Google Scholar

[4] B. Schoelkopf, S. Mika, C.J.C. Burges, P. Knirsch, K.R. Muller and G. Ratsch: IEEE Trans. on Neural Network Vol. 10 (1999), p.1000.

DOI: 10.1109/72.788641

Google Scholar

[5] K.R. Muller,S. Mika, G. Ratsch, K. Tsuda and B. Scholkopf: IEEE Trans. on Neural Network Vol. 12 (2001), p.181.

DOI: 10.1109/72.914517

Google Scholar

[6] B. Scholkopf and A.J. Smola: Learning with Kernels (The MIT Press, Massachusetts 2002).

Google Scholar

[7] T.J. Shawe and N. Cristianini N: Kernel Methods for Pattern Analysis (Cambridge University Press, Cambridge 2004).

Google Scholar

[8] T. Damoulas and M.A. Girolami: Bioinformatics Vol. 24 (2008), p.1264.

Google Scholar

[9] F.R. Bach: J. Machine Learning Research Vol. 9 (2008), p.1179.

Google Scholar

[10] S. Sonnenburg, G. Ratsch, C. Schafer and B. Scholkopf: J. Machine Learning Research Vol. 7 (2006), p.1531.

Google Scholar

[11] H.A. Ben and W.S. Noble: Bioinformatics Vol. 21 (2005), p.38.

Google Scholar

[12] A. Rakotomamonjy, F.R. Bach, S. Canu and Y. Grandvalet: Proc. 24th Int. Conf. on Machine Learning (ACM, Oregon 2007), p.775.

DOI: 10.1145/1273496.1273594

Google Scholar

[13] A. Rakotomamonjy, F.R. Bach, S. Canu and Y. Grandvalet: J. Machine Learning Research Vol. 9 (2008), p.2491.

Google Scholar

[14] D.N. Zheng, J.X. Wang and Y.N. Zhao: Neurocomputing Vol. 70 (2006), p.420.

Google Scholar

[15] Z. Yang, J. Guo, W. Xu, X.F. Nie, J. Wang and J.J. Lei: Proc. 3rd Int. Symp. Conf. on Neural Networks (Springer, China 2006), p.1030.

Google Scholar

[16] G.R.G. Lanckriet, N. Cristianini and P. Bartlett: J. Machine Learning Research Vol. 5 (2004), pp.27-72.

Google Scholar