[1]
Mason W P. Piezoelectric Crystals and Their Application in Ultrasonic New York: Van Nostrand, 1950: 161.
Google Scholar
[2]
Bathias C. Piezoelectric fatigue testing machines and devices. International Journal of Fatigue, 2006, 28: 1438-1445.
DOI: 10.1016/j.ijfatigue.2005.09.020
Google Scholar
[3]
Wenjie Peng, Baowen Qiu, Rongfeng Li and Huan Xue. Ultrasonic fatigue tests on a high strength steel for welded structure. Advanced Materials Research, 2012, 503-504: 714-717.
DOI: 10.4028/www.scientific.net/amr.503-504.714
Google Scholar
[4]
Zettl B, Mayer H, Ede C, et a1. Very high cycle fatigue of normalized carbon steels. International Journal of Fatigue, 2006, 28: 1583-1589.
DOI: 10.1016/j.ijfatigue.2005.05.016
Google Scholar
[5]
Wenjie Peng, et al. An investigation of the fatigue property of ultra-high strength mould steel at 130 Hz and 20 kHz. Submitting. (2012).
Google Scholar
[6]
Xue Hongqian, et. al. The design of specimen for fatigue test at ultrasonic frequency. Acta Aeronautics et Astronautics sinica, 2004, 25(4): 425-428.
Google Scholar
[7]
Li Shouxin, Weng Yuqing, Hui Weiguo, Yang Zhenguo. High-cycle fatigue properties of high strength steel. Beijing: Metallurgical Industry Press, (2010).
Google Scholar
[8]
Wenjie Peng, et al. A brief review of the application and problems in ultrasonic fatigue testing. 2012 AASRI Conference on Power and Energy Systems, AASRI Procedia.
DOI: 10.1016/j.aasri.2012.09.024
Google Scholar
[9]
Y. Furuya, et al. 1010-cycle fatigue properties of 1800MPa-class JIS-SUP7 spring steel. Fatigue Fract Engng Mater Struc, 2003, 26: 641-645.
DOI: 10.1046/j.1460-2695.2003.00661.x
Google Scholar
[10]
Y. Furuya. Specimen size effects on gigacycle fatigue properties of high-strength steel under ultrasonic fatigue testing. Script Materialia, 2008, 58: 1014-1017.
DOI: 10.1016/j.scriptamat.2008.01.039
Google Scholar