Study on Techniques of Hand Gesture Recognition

Article Preview

Abstract:

This paper describes the study of techniques used in hand gesture recognition in sign language interpretation. The study is discussed from two aspects: the process of hand gesture recognition and the techniques of feature extraction in hand gesture recognition. The techniques of feature extraction in hand gesture recognition are grouped into five categories: Hidden Markov Model (HMM), Artificial Neural Networks (ANN), Support Vector Machines (SVM), Dynamic Bayesian Network (DBN), and Dynamic Time Warping (DTW). The main ideas and the application of each technique are described in detail.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1664-1667

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Fang, K. Wang, J. Cheng, and H. Lu: A Real-Time Hand Gesture Recognition Method, IEEE International Conference on Multimedia and Expo, Beijing, China, pp.995-998 (2007).

DOI: 10.1109/icme.2007.4284820

Google Scholar

[2] N. Liu, B.C. Lovell, and P.J. Kootsookos: Evaluation of HMM Training Algorithms for Letter Hand Gesture Recognition, IEEE International Symposium on Signal Processing and Information Technology, pp.648-651 (2003).

DOI: 10.1109/isspit.2003.1341204

Google Scholar

[3] F.S. Chen, C.M. Fu, C.L. Huang: Hand Gesture Recognition Using a Real-Time Tracking Method and Hidden Markov Models, Image and Vision Computing, Vol. 21, pp.745-758 (2003).

DOI: 10.1016/s0262-8856(03)00070-2

Google Scholar

[4] O. Rashid, A. Al-Hamadi and B. Michaelis: Utilizing Invariant Descriptors for Finger Spelling American Sign Language Using SVM, Advances in Visual Computing Lecture Notes in Computer Science, Vol. 6453, pp.253-263 (2010).

DOI: 10.1007/978-3-642-17289-2_25

Google Scholar

[5] H. Suk, B.K. Sin, S.W. Lee: Hand Gesture Recognition Based on Dynamic Bayesian Network Framework, Pattern Recognition, Vol. 43, pp.3059-3072 (2010).

DOI: 10.1016/j.patcog.2010.03.016

Google Scholar

[6] M.M. Zaki, S.I. Shaheen: Sign Language Recognition Using a Combination of New Vision Based Features, Pattern Recognition Letters, Vol. 32, pp.572-577 (2011).

DOI: 10.1016/j.patrec.2010.11.013

Google Scholar

[7] A. Licsár and T. Szirányi: Hand Gesture Recognition in Camera-Projector System, Computer Vision in Human-Computer Interaction Lecture Notes in Computer Science, Vol. 3058, pp.83-93 (2004).

DOI: 10.1007/978-3-540-24837-8_9

Google Scholar

[8] H. Cooper, E.J. Ong and R. Bowden: Give Me a Sign: A Person Independent Interactive Sign Dictionary, Technical Report VSSP-TR-1 (2011).

Google Scholar

[9] S. Marcel, O. Bernier and J.E. Viallet et al.: Hand Gesture Recognition Using Input-Output Hidden Markov Models. Proceeding of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition, pp.456-461 (2000).

DOI: 10.1109/afgr.2000.840674

Google Scholar

[10] S. Mitra and T. Acharya: Gesture Recognition: A Survey. IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews, Vol. 37, pp.311-324 (2007).

DOI: 10.1109/tsmcc.2007.893280

Google Scholar

[11] C. Nolker, H. Ritter: Visual Recognition of Continuous Hand Postures, IEEE Transactions on Neural Networks, Vol 13, pp.983-994 (2002).

DOI: 10.1109/tnn.2002.1021898

Google Scholar

[12] D. Huang, W. Hu, S. Chang: Gabor Filter-Based Hand-Pose Angle Estimation for Hand Gesture Recognition Under Varying Illumination, Expert Systems with Applications, (2010).

DOI: 10.1016/j.eswa.2010.11.016

Google Scholar

[13] H. Sakoe, S. Chiba: Dynamic programming algorithm optimization for spoken word recognition, IEEE Trans Acoustics Speech Signal Process ASSP 26, pp.43-49 (1978).

DOI: 10.1109/tassp.1978.1163055

Google Scholar

[14] A. Corradini: Dynamic Time Warping for Off-Line Recognition of a Small Gesture Vocabulary, Analysis, and Tracking of Faces and Gestures in Real-Time Systems, pp.82-89 (2001).

DOI: 10.1109/ratfg.2001.938914

Google Scholar