Micro-Crack Propagation in Particulate Composite with Different Types of Matrix

Article Preview

Abstract:

Particulate composites with polymer matrix and solid fillers are one of important types of materials. Generally, these materials are usually used as construction materials, high-performance engineering materials or protective organic coatings. The main aim of a present paper is an estimation of the micro-crack behavior in the particulate composite with non-linear polymer matrix. The polymer matrix filled by magnesia-based mineral filler is investigated by means of the finite element method. A non-linear material behavior of the matrix was obtained from experiment as well as properties of mineral filler. Numerical model on the base of representative plane element (RPE) was developed. The results show that the presence of interphase between particle and matrix can improve fracture toughness of polymer particle composite through debonding process. The conclusions of this paper can contribute to a better understanding of the behavior of micro-crack in particulate composites with respect to interphase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

138-143

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. G. Elias, An Introduction to Plastics, 2nd ed., Wiley-VCH GmbH & Co.KGaA, Weinheim, 2003.

Google Scholar

[2] J. Golebiewskia, A. Galeski, Thermal stability of nanoclay polypropylene composites by simultaneous DSC and TGA, Comp. Sc. and Tech. 17 (2007) 3442-3447.

DOI: 10.1016/j.compscitech.2007.03.007

Google Scholar

[3] Y. S. Thio, A. S. Argon, R. E. Cohen, M. Weinberg, Toughening of isotatic polypropylene with CaCO3 particles, Polymer 43 (2002) 3661-3674.

DOI: 10.1016/s0032-3861(02)00193-3

Google Scholar

[4] S. Zokaei, R. Lesan-Khosh, R. Bagheri, Study of scratch resistance in homo- and co-polypropylene filled with nanometric calcium carbonate, Mat. Sc. and Eng. A, 445 (2007) 526-536.

DOI: 10.1016/j.msea.2006.09.080

Google Scholar

[5] Z. Demjen, B. Pukanszky, J. Nagy, Evaluation of interfacial interaction in polypropylene/ surface treated CaCO3 composites, Composites 29A (1998) 323–329.

DOI: 10.1016/s1359-835x(97)00032-8

Google Scholar

[6] P. Hutař, Z. Majer, L. Náhlík, L. Šestáková, Z. Knésl, Influence of particle size on the fracture toughness of a PP-based particulate composite, Mech. of Comp. Mat. 45 (2009) 281-286.

DOI: 10.1007/s11029-009-9085-6

Google Scholar

[7] S. M. Zebarjad, M. Tahani, S. A.Sajjadi, Influence of filler particles on deformation and fracture mechanism of isotactic polypropylene, J. of Mat. Proc. Tech. 155 (2004) 1459-1464.

DOI: 10.1016/j.jmatprotec.2004.04.187

Google Scholar

[8] Z. Majer, P. Hutař, Z. Knésl, Crack behaviour in polymeric composites: The influence of particle shape, Key Eng. Mat. 465 (2011) 564-567.

DOI: 10.4028/www.scientific.net/kem.465.564

Google Scholar

[9] F. N. Ahmad, M. Jaafar, S. Palaniandy, K. A. M. Azizli, Effect of particle shape of silica mineral on the properties of epoxy composites, Comp. Sc. and Tech. 68 (2008) 346-353.

DOI: 10.1016/j.compscitech.2007.07.015

Google Scholar

[10] J. Leidner, R. T. Woodhams, The strength of polymeric composites containing spherical fillers, J. of Appl. Pol. Sc. 18 (1974) 1639–1654.

DOI: 10.1002/app.1974.070180606

Google Scholar

[11] M. DeSarkar, P. Senthilkumar, S. Franklin, G. Chatterjee, Effect of Particulate Fillers on Thermal Expansions and Other Critical Performances of Polycarbonate-Based Compositions, J. of Appl. Pol. Sc. 124 (2011) 215-226.

DOI: 10.1002/app.33667

Google Scholar

[12] R. N. Rothon, Particulate-Filled Polymer Composites, 2nd ed., Rupra Technology Limited, Shrewsbury, 2003.

Google Scholar

[13] I. L. Dubnikova, V. G. Oshmyan, A. Y. Gorenberg, Mechanisms of particulate filled polypropylene finite plastic deformation and fracture, J. of Mat. Sc. 32 (1997) 1613–1622.

Google Scholar

[14] O. K. Muratoglu, A. S. Argon, R. E. Cohen, M. Weinberg, Toughening mechanism of rubber-modified polyamides, Polymer 36 (1995) 921–930.

DOI: 10.1016/0032-3861(95)93590-i

Google Scholar

[15] A. R. Katritzky, R. Sakhuja, L. Huang, R. Gyanda, L. Wang, D. C. Jackson, D. A. Ciaramitaro, C. D. Bedford, R. S. Duran, Effect of Filler Loading on the Mechanical Properties of Crosslinked 1,2,3-Triazole Polymers, J. of App. Pol. Sc. 118 (2010) 121-127.

DOI: 10.1002/app.32257

Google Scholar

[16] R. Pal, New models for effective Young's modulus of particulate composites, Comp. Part B: Engin. 36 (2005) 513-523.

DOI: 10.1016/j.compositesb.2005.02.003

Google Scholar

[17] G. V. Kozlov, Yu. S. Lipatov, Change in the structure of polymer matrix of particulate-filled composites: The fractal treatment, Mech. of Comp. Mat. 40 (2004) 545-550.

DOI: 10.1007/s11029-005-0026-8

Google Scholar

[18] Z. Majer, L. Náhlík, P. Hutař, The estimation of micro-crack behavior in polymer particulate composite with soft interphase, Adv. Mat. R. 482-484 (2012) 1660-1663.

DOI: 10.4028/www.scientific.net/amr.482-484.1660

Google Scholar

[19] Z. H. Liu, K. W. Kwok, R. K. Y. Li, C. L. Choy, Effects of coupling agent and morphology on the impact strength of high density polyethylene/CaCO3 composites. Polymer 43 (2002) 2501-2506.

DOI: 10.1016/s0032-3861(02)00048-4

Google Scholar

[20] Z. Majer, P. Hutař, The effect of nonlinear matrix on crack propagation in the particulate composite, Key Eng. Mat. 488-489 (2012) 484-487.

DOI: 10.4028/www.scientific.net/kem.488-489.484

Google Scholar

[21] G. Levita, A. Marchetti and A. Lazzeri, Fracture of ultrafine calcium carbonate/polypropylene composites, Polym. Comp. Vol. 10 (1989) 39–43.

DOI: 10.1002/pc.750100106

Google Scholar

[22] B. Pukánszky, Interfaces and interphases in multicomponent materials: past, present, future, Eur. Pol. J. 41 (2005) 645-662.

DOI: 10.1016/j.eurpolymj.2004.10.035

Google Scholar

[23] S. Y. Fu, X. Q. Feng, B. Lauke, Y. W. Mai, Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites, Composites: Part B 39 (2008) 933–961.

DOI: 10.1016/j.compositesb.2008.01.002

Google Scholar

[24] M. Kozak, A. Danch, W. Osoba, L. Domka, F. Stelzer, S. Jurga, Relationship between filler loading and morphology of the interphase in polyethylene-chalk composites, Polym. and Polymer Comp. 12 (2004) 409-416.

DOI: 10.1177/096739110401200505

Google Scholar

[25] W. C. J. Zuiderduin, C. Westzaan, J. Huétink, R. J. Gaymans, Toughening of polypropylene with calcium carbonate particles, Polymer 44 (2002) 261-275.

DOI: 10.1016/s0032-3861(02)00769-3

Google Scholar

[26] Z. Majer, E. Novotná, The effect of various non-linear matrix types on mechanical properties of particulate composite, Chemické listy 105 (2011) 830-831.

Google Scholar

[27] E. Molliková, The relationship between production technology, structure and mechanical properties of polypropylene filled with magnesium hydroxide [in czech], Ph.D. thesis, Brno (2003).

Google Scholar

[28] F. Erdogan, G. C. Sih, On the Crack Extension in Plates under Plane Loading and Transverse Shear, J. of Basic Eng. 85 (1963) 519-527.

DOI: 10.1115/1.3656898

Google Scholar

[29] G. M. Kim, G. H. Michler, Micromechanical deformation processes in toughened and particle-filled semicrystalline polymers: part1,2, Polymer 39 (1998) 5689-5703.

DOI: 10.1016/s0032-3861(98)00169-4

Google Scholar