Robotics for Neurorehabilitation: Current State and Future Challenges

Article Preview

Abstract:

Currently in neurorehabilitation robotic devices are mostly applied for rehabilitation of the motor functions of the lower and upper extremities. Even if in recent research autonomous and humanoid robots are being used for cognitive rehabilitation robot medicated therapy predominately supports relearning of motor functions for subjects suffering from stroke, spinal cord injury or other neurological conditions. This review paper provides a summary of the main features and applied methods, and presents some examples to outline the large diversity of currently used devices. Future challenges for rehabilitation robotics to reach full clinical acceptance are clear answers regarding the optimal dosage of movement therapy and right inclusion/exclusion criteria for specific treatments.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-8

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I.Díaz I, J.J. Gil JJ, E. Sánchez, Lower-Limb Robotic Rehabilitation. Literature Review and Challenges, Article ID 759764, Journal of Robotics, (2011).

DOI: 10.1155/2011/759764

Google Scholar

[2] Hesse S, Werner C, Seibel H, von Frankenberg S, Kappel EM, Kirker S, Käding M.Treadmill training with partial body-weight support after total hip arthroplasty: a randomized controlled trial, Arch Phys Med Rehabil. 84(12) (2003) 1767-73.

DOI: 10.1016/s0003-9993(03)00434-9

Google Scholar

[3] D.P. Ferris, J.M. Czerniecki, B.Hannaford, An ankle-foot orthosis powered by artificial pneumatic muscles, J Appl Biomech 21(2) (2005) 189-97.

DOI: 10.1123/jab.21.2.189

Google Scholar

[4] S.P. Messier, R.F. Loeser, J.L. Hoover, Semble EL, C.M. Wise, Osteoarthritis of the knee: effects on gait, strength, and flexibility, Archives of Physical Medicine and Rehabilitation 73(1) (1992) 29–36.

Google Scholar

[5] C. Senanayake, S.M.N.A. Senanayake, Emerging robotics devices for therapeutic rehabilitation of the lower extremity, Advanced Intelligent Mechatronics, IEEE/ASME International Conference, 2009.

DOI: 10.1109/aim.2009.5229740

Google Scholar

[6] S. Hussain, S. Xie, G. Liu, Robot assisted treadmill training: Mechanisms and training strategies, Med Eng Phys 33(5) (2011) 527-33.

DOI: 10.1016/j.medengphy.2010.12.010

Google Scholar

[7] B.H. Dobkin, P.W. Duncan, Should body weight-supported treadmill training and robotic-assistive steppers for locomotor training trot back to the starting gate?, Neurorehabil Neural Repair 26(4) (2012) 308-17.

DOI: 10.1177/1545968312439687

Google Scholar

[8] C. Tefertiller, B. Pharo, N. Evans, P. Winchester, Efficacy of rehabilitation robotics for walking training in neurological disorders: a review, J Rehabil Res Dev. 48(4) (2011) 387-416.

DOI: 10.1682/jrrd.2010.04.0055

Google Scholar

[9] J. Mehrholz, R. Friis, J. Kugler, S. Twork, A. Storch, Pohl M.Treadmill training for patients with Parkinson's disease, Cochrane Database Syst Rev. 20 (2010) 1pp.

DOI: 10.1002/14651858.cd007830.pub2

Google Scholar

[10] L. Marchal-Crespo, D.M. Reinkensmeyer, Review of control strategies for robotic movement training after neurologic injury, J Neuroeng Rehabil. (2009) 6-20.

DOI: 10.1186/1743-0003-6-20

Google Scholar

[11] J. F. Veneman, R. Ekkelenkamp, R. Kruidhof, F. C.T. van der Helm, H. van der Kooij, A Series elastic- and bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots, International Journal of Robotics Research 25 (2006) 261-281.

DOI: 10.1177/0278364906063829

Google Scholar

[12] P. Langhorne, F. Coupar, A. Pollock, Motor recovery after stroke: a systematic review, Lancet Neurol. 8(8) (2009) 741-54.

DOI: 10.1016/s1474-4422(09)70150-4

Google Scholar

[13] J. Klein, S.J. Spencer, D.J. Reinkensmeyer, Breaking it down is better: haptic decomposition of complex movements aids in robot-assisted motor learning, IEEE Trans Neural Syst Rehabil Eng 20(3) (2012) 268-75.

DOI: 10.1109/tnsre.2012.2195202

Google Scholar

[14] S. Hesse, C. Werner, M. Pohl, S. Rueckriem, J. Mehrholz, M.L. Lingnau, Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers, Stroke 36(9) (2005) 1960-1966.

DOI: 10.1161/01.str.0000177865.37334.ce

Google Scholar

[15] C.D. Takahashi, L. Der-Yeghiaian , V. Le, R.R. Motiwala, S.C. Cramer, Robot-based hand motor therapy after stroke, Brain 131(2008) 425-37.

DOI: 10.1093/brain/awm311

Google Scholar

[16] N. Hogan, H.I. Krebs, B. Rohrer, J.J. Palazzolo, L. Dipietro, S.E. Fasoli, J. Stein, R. Hughes, W.R. Frontera, D. Lynch, B.T. Volpe, Motions or muscles? Some behavioral factors underlying robotic assistance of motor recovery, J Rehabil Res Dev. 43(5) (2006) 605-18.

DOI: 10.1682/jrrd.2005.06.0103

Google Scholar

[17] J.L. Patton, M.E. Stoykov, M. Kovic, F.A. Mussa-Ivaldi, Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors, Exp Brain Res. 168(3) (2006) 368-83.

DOI: 10.1007/s00221-005-0097-8

Google Scholar

[18] J.C. Perry, J. Andureu, F.I. Cavallaro, J.F. Veneman, S.P. Carmien T. Keller, Effective game use in neurorehabilitation: user-centered perspectives, in Handbook of Research on Improving Learning and Motivation through Educational Games, IGI Global, (2011) 683-725.

DOI: 10.4018/978-1-60960-495-0.ch032

Google Scholar

[19] B.R. Brewer, S.K McDowell., L.C. Worthen-Chaudhari, Poststroke upper extremity reha-bilitation: a review of robotic systems and clinical results, Top Stroke Rehabil. 14(6) (2007) 22-44.

DOI: 10.1310/tsr1406-22

Google Scholar

[20] I. Sarakoglou, S. Kousidou, N. Tsagarakis and D.G. Caldwell, Exoskeleton-Based Exercisers for the Disabilities of the Upper Arm and Hand, In Rehabilitation Robotics, S.S. Kommu, Ed., InTech, Vienna, Austria, (2007) 499-522.

DOI: 10.5772/5177

Google Scholar

[21] A.C. Lo, P.D. Guarino, L.G. Richards, et. al., Robot-Assisted Therapy for Long-Term Upper-Limb Impairment after Stroke, N Engl J Med 362 (2010) 1772-1783.

Google Scholar