Carbon Materials Electrodes: Electrochemical Analysis Applications

Article Preview

Abstract:

The electrochemical properties of traditional carbon materials and applications of these materials based electrodes as well as physical and chemically modified carbon materials electrodes would be reviewed. Hence, the scope of the current review is limited to analytical electrochemistry using carbon materials electrode, and 48 references are cited.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

262-267

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[2] D.D.L. Chung, Review: Graphite, Journal of Materials Science, 37 (2002) 1475-1489.

Google Scholar

[3] C.E. Banks, R.G. Compton, Edge plane pyrolytic graphite electrodes in electroanalysis: an overview, Anal. Sci. 21 (2005) 1263-1268.

DOI: 10.2116/analsci.21.1263

Google Scholar

[4] R.R. Moore, C.E. Banks, R.G. Compton, Basal plane pyrolytic graphite modified electrodes: comparison of carbon nanotubes and graphite powder as electrocatalysts, Anal. Chem. 76 (2004) 2677-2682.

DOI: 10.1021/ac040017q

Google Scholar

[5] Z.D. Chen, X.H. Chen, J. Yuan, Fabrication of poly(hydroquinone) modified expanded graphite electrode and its properties, Chinese Journal of Analytical Chemistry, 38 (2010) 555-558.

Google Scholar

[6] Y.L. Gao, Y.N. Tian, Direct electrochemistry immobilized of hemoglobin at hydroxyapatite modified by edge-plane pyrolytic graphite electrode, Chemical Research and Application, 19 (2007) 589-593.

Google Scholar

[7] Y.X. Sun, G.Z. Zhou, X. Hu, Determination of chlorphenaminemaleate by carbon nanotubes modified graphite electrode, Chin. J. Pharm. Anal. 29 (2009) 1558-1561.

Google Scholar

[8] W. Zhao, Y. Kong, J.Q. Kan, Fabrication of expanded graphite electrode and its application in electrochemical detection of tryptophan, Chinese Journal of Chemistry, 37 (2009) 62-66.

Google Scholar

[9] Y. Yue, G.Z. Hu, M.B. Zheng, A mesoporous carbon nanofiber-modified pyrolytic graphite electrode used for the simultaneous determination of dopamine, uric acid, and ascorbic acid, Carbon. 50 (2012) 107-114.

DOI: 10.1016/j.carbon.2011.08.013

Google Scholar

[10] R.N. Goyal, A.R.S. Rana, H. Chasta, Electrochemical sensor for the sensitive determination of norfloxacin in human urine and pharmaceuticals, Bioelectrochemistry, 83 (2012) 46-51.

DOI: 10.1016/j.bioelechem.2011.08.006

Google Scholar

[1] G. Tomáš, M. Frank, S. Uwe, Electrochemical analysis of solids. A Review, Collection of Czechoslovak Chemical Communications, 67 (2002) 163-208.

Google Scholar

[12] R.N. Adams, Carbon Paste Electrodes, Anal. Chem. 30 (1958) 1576-1576.

DOI: 10.1021/ac60141a600

Google Scholar

[3] L.H. Yi, J.F. Wang, J.N. Li, Anodic adsorptive voltammetric determination of norfloxacin using carbon paste electrode, PTCA(Part B: Chem. Anal. ), 43 (2007) 57-59.

Google Scholar

[4] R.S. Babu, P. Prabhu, S.S. Narayanan, Selective electrooxidation of uric acid in presence of ascorbic acid at a room temperature ionic liquid/nickel hexacyanoferarrate nanoparticles composite electrode, Colloids and Surfaces B: Biointerfaces, 88 (2011).

DOI: 10.1016/j.colsurfb.2011.08.011

Google Scholar

[5] M. H. Mashhadizadeh, M. Akbarian, Voltammetric determination of some anti-malarial drugs using a carbon paste electrode modified with Cu(OH)2 nano-wire, Talanta, 78 (2009) 1440-1445.

DOI: 10.1016/j.talanta.2009.02.040

Google Scholar

[6] S. Shahrokhian, M. Ghalkhani, M.K. Amini, Application of carbon-paste electrode modified with iron phthalocyanine for voltammetric determination of epinephrine in the presence of ascorbic acid and uric acid, Sensors and Actuators B, 137 (2009).

DOI: 10.1016/j.snb.2009.01.022

Google Scholar

[7] M.E. Lozano-Chaves, J.M. Palacios-Santander, L.M. Cubillana-Aguilera, Modified carbon- paste electrodes as sensors for the determination of 1, 4-benzodiazepines: Application to the determination of diazepam and oxazepam in biological fluids, Sensors and Actuators B, 115 (2006).

DOI: 10.1016/j.snb.2005.10.021

Google Scholar

[8] Y.H. Wu, X.Y. Mao, X.J. Cui, Electroanalytical application of graphite nanofibers paste electrode, Sensors and Actuators B: Chemical, 145 (2010) 749-755.

DOI: 10.1016/j.snb.2010.01.037

Google Scholar

[9] Y.S. Singh, L.E. Sawarynski, P.D. Dabiri, Head-to-head comparisons of carbon fiber microelectrode coatings for sensitive and selective neurotransmitter detection by voltammetry, Anal. Chem. 83 (2011) 6658-6666.

DOI: 10.1021/ac2011729

Google Scholar

[20] X.Q. Lin, G.F. Kang, Y. Chai, A Nafion and choline Bi-layer modified carbon fiber electrode for in-vivo detection of dopamine in mouse cerebrum, Chin J Anal Chem. 36 (2008) 157-161.

DOI: 10.1016/s1872-2040(08)60016-x

Google Scholar

[21] G. Munteanua, E. Dempsey, T. McCormac, Novel ultrasensitive and ultrafast voltammetric determination of biological aminochromes on the copper nanodoped mercury monolayer carbon fiber electrode, Journal of Electroanalytical Chemistry, 650 (2010).

DOI: 10.1016/j.jelechem.2010.08.016

Google Scholar

[22] Y. Xu, J. Zhu, X.Y. Zhang, Aligned carbon nanotube microelectrode for the electrochemical detection of 5-HT neurotransmitter, Chinese Sci Bull (Chinese Ver), 56 (2011) 1790-1793.

DOI: 10.1360/972010-2129

Google Scholar

[23] X.G. Zhou, C.Y. Zheng, J.Y. Sun, Analysis of nephroloxic and carcinogenic aristolochic acids in Aristolochia plants by capillary electrophoresis with electrochemical detection at a carbon fiber microdisk electrode, Journal of Chromatography A, 1109 (2006).

DOI: 10.1016/j.chroma.2005.12.072

Google Scholar

[24] H. Cheng, J.H. Wu, R.S. Chen, Comparison of four carbon fiber electrodes in microfluidic chip integrated with electrochemical detector, Chin. J. Anal. Chem. 36 (2008) 1-6.

Google Scholar

[25] Q.Y. Chen, D.M. Gruen, A.R. Krauss, The structure and electrochemical behavior of nitrogen-containing nanocrystalline diamond films deposited from CH4/N2/Ar mixtures, Journal of The Electrochemical Society, 148 (2001) E44-E51.

DOI: 10.1149/1.1344550

Google Scholar

[26] Y. Show, M.A. Witek, P. Sonthalia, Characterization and electrochemical responsiveness of boron-doped nanocrystalline diamond thin-film electrodes, Chem. Mater. 15 (2003) 879-888.

DOI: 10.1021/cm020927t

Google Scholar

[27] Y.V. Pleskov, Electrochemistry of diamond: A Review, Russian Journal of Electrochemistry, 38 (2002) 1275-1291.

Google Scholar

[28] M. Panizza, G. Cerisola, Application of diamond electrodes to electrochemical processes, Electrochimica Acta. 51 (2005) 191-199.

DOI: 10.1016/j.electacta.2005.04.023

Google Scholar

[29] J. Wu, X.L. Li, X.M. Wu, Electrochemical detection of clenbuterol in pig liver at pyrrole-DNA modified boron-doped diamond electrode, Chem. Res. Chinese U. 21 (2005) 517-521.

Google Scholar

[30] P. Zhong, D.B. Luo, Y. Ren, Electrochemical detection of biapenem by a boron-doped diamond nanorod electrode, Chemical Research and Application, 23 (2011) 1246-1249.

Google Scholar

[31] A. Levent, Electrochemical determination of melatonin hormone using a boron-doped diamond electrode, Diamond & Related Materials, 21 (2012) 114-119.

DOI: 10.1016/j.diamond.2011.10.018

Google Scholar

[32] D. Shin, B.V. Sarada, D.A. Tryk, Application of diamond microelectrodes for end-column electrochemical detection in capillary electrophoresis, Anal. Chem. 75 (2003) 530-534.

DOI: 10.1021/ac020513j

Google Scholar

[33] J. Wang, G. Chen, M.P. Chatrathi, Microchip capillary electrophoresis coupled with a boron-doped diamond electrode-based electrochemical detector, Anal. Chem. 75 (2003) 935-939.

DOI: 10.1021/ac0262053

Google Scholar

[34] A. Qureshi, W.P. Kang, J.L. Davidson, Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications, Diamond & Related Materials, 18 (2009) 1401-1420.

DOI: 10.1016/j.diamond.2009.09.008

Google Scholar

[35] R. Maalouf, H. Chebib, Y. Saikali, Characterization of different diamond-like carbon electrodes for biosensor design, Talanta, 72 (2007) 310-314.

DOI: 10.1016/j.talanta.2006.10.025

Google Scholar

[36] G.C. Yang, E. Liu, N.W. Khun, Direct electrochemical response of glucose at nickel-doped diamond like carbon thin film electrodes, J. Electroanal. Chem. 627 (2009) 51-57.

DOI: 10.1016/j.jelechem.2008.12.019

Google Scholar

[37] J. Kim, J. Pyun, Electrochemical ELISA using diamond-like carbon (DLC) microelectrode for RA diagnosis, Procedia Chemistry, 1 (2009) 1047-1050.

DOI: 10.1016/j.proche.2009.07.261

Google Scholar

[38] R. Ryoo, S.H. Joo, S. Jun, Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation, J. Phys. Chem. B. 103 (1999) 7743-7746.

DOI: 10.1021/jp991673a

Google Scholar

[39] J.J. Feng, J.J. Xu, H.Y. Chen, Direct electron transfer and electrocatalysis of hemoglobin adsorbed on mesoporous carbon through layer-by-layer assembly, Biosensors and Bioelectronics, 22 (2007) 1618-1624.

DOI: 10.1016/j.bios.2006.07.022

Google Scholar

[40] N.Q. Jia, Z.Y. Wang, G.F. Yang, Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine, Electrochemistry Communications, 9 (2007) 233-238.

DOI: 10.1016/j.elecom.2006.08.050

Google Scholar

[41] B.Y. Dong, Y.L. Chen, Preparation of ordered mesoporous carbon-chitosan film modified electrode and its catalytic oxidation of ascorbic acid, Journal of Analytical Science, 26 (2010) 315-318.

Google Scholar

[42] G.Z. Hu, Y. Guo, S.J. Shao, Ultrasensitive electrochemical sensing of the anticancer drug tirapazamine using an ordered mesoporous carbon modified pyrolytic graphite electrode, Biosensors and Bioelectronics, 24 (2009) 3391-3394.

DOI: 10.1016/j.bios.2009.04.028

Google Scholar

[43] Y. Yue, G.Z. Hu, M.B. Zheng, A mesoporous carbon nanofiber-modified pyrolytic graphite electrode used for the simultaneous determination of dopamine, uric acid, and ascorbic acid, Carbon, 50(2012) 107-114.

DOI: 10.1016/j.carbon.2011.08.013

Google Scholar

[44] D. Zheng, J.D. Ye, L. Zhou, Simultaneous determination of dopamine, ascorbic acid and uric acid on ordered mesoporous carbon/Nafion composite film, Journal of Electroanalytical Chemistry, 625 (2009) 82-87.

DOI: 10.1016/j.jelechem.2008.10.012

Google Scholar

[45] J.C. Ndamanisha, L.P. Guo, Electrochemical determination of uric acid at ordered mesoporous carbon functionalized with ferrocenecarboxylic acid-modified electrode, Biosensors and Bioelectronics, 23 (2008) 1680-1685.

DOI: 10.1016/j.bios.2008.01.026

Google Scholar

[46] H.J. Yang, B.P. Lu, B. Qi, Voltammetric sensor based on ordered mesoporous carbon for folic acid determination, Journal of Electroanalytical Chemistry, 660 (2011) 2-7.

DOI: 10.1016/j.jelechem.2011.04.023

Google Scholar

[47] X. Yan, X.J. Bo, L.P. Guo, Electrochemical behaviors and determination of isoniazid at ordered mesoporous carbon modified electrode, Sensors and Actuators B, 155 (2011) 837-842.

DOI: 10.1016/j.snb.2011.01.058

Google Scholar

[48] H. Wang, B. Qi, B.P. Lu, Comparative study on the electrocatalytic activities of ordered mesoporous carbons and graphene, Electrochimica Acta. 56 (2011) 3042-3048.

DOI: 10.1016/j.electacta.2010.12.099

Google Scholar