[2]
D.D.L. Chung, Review: Graphite, Journal of Materials Science, 37 (2002) 1475-1489.
Google Scholar
[3]
C.E. Banks, R.G. Compton, Edge plane pyrolytic graphite electrodes in electroanalysis: an overview, Anal. Sci. 21 (2005) 1263-1268.
DOI: 10.2116/analsci.21.1263
Google Scholar
[4]
R.R. Moore, C.E. Banks, R.G. Compton, Basal plane pyrolytic graphite modified electrodes: comparison of carbon nanotubes and graphite powder as electrocatalysts, Anal. Chem. 76 (2004) 2677-2682.
DOI: 10.1021/ac040017q
Google Scholar
[5]
Z.D. Chen, X.H. Chen, J. Yuan, Fabrication of poly(hydroquinone) modified expanded graphite electrode and its properties, Chinese Journal of Analytical Chemistry, 38 (2010) 555-558.
Google Scholar
[6]
Y.L. Gao, Y.N. Tian, Direct electrochemistry immobilized of hemoglobin at hydroxyapatite modified by edge-plane pyrolytic graphite electrode, Chemical Research and Application, 19 (2007) 589-593.
Google Scholar
[7]
Y.X. Sun, G.Z. Zhou, X. Hu, Determination of chlorphenaminemaleate by carbon nanotubes modified graphite electrode, Chin. J. Pharm. Anal. 29 (2009) 1558-1561.
Google Scholar
[8]
W. Zhao, Y. Kong, J.Q. Kan, Fabrication of expanded graphite electrode and its application in electrochemical detection of tryptophan, Chinese Journal of Chemistry, 37 (2009) 62-66.
Google Scholar
[9]
Y. Yue, G.Z. Hu, M.B. Zheng, A mesoporous carbon nanofiber-modified pyrolytic graphite electrode used for the simultaneous determination of dopamine, uric acid, and ascorbic acid, Carbon. 50 (2012) 107-114.
DOI: 10.1016/j.carbon.2011.08.013
Google Scholar
[10]
R.N. Goyal, A.R.S. Rana, H. Chasta, Electrochemical sensor for the sensitive determination of norfloxacin in human urine and pharmaceuticals, Bioelectrochemistry, 83 (2012) 46-51.
DOI: 10.1016/j.bioelechem.2011.08.006
Google Scholar
[1]
G. Tomáš, M. Frank, S. Uwe, Electrochemical analysis of solids. A Review, Collection of Czechoslovak Chemical Communications, 67 (2002) 163-208.
Google Scholar
[12]
R.N. Adams, Carbon Paste Electrodes, Anal. Chem. 30 (1958) 1576-1576.
DOI: 10.1021/ac60141a600
Google Scholar
[3]
L.H. Yi, J.F. Wang, J.N. Li, Anodic adsorptive voltammetric determination of norfloxacin using carbon paste electrode, PTCA(Part B: Chem. Anal. ), 43 (2007) 57-59.
Google Scholar
[4]
R.S. Babu, P. Prabhu, S.S. Narayanan, Selective electrooxidation of uric acid in presence of ascorbic acid at a room temperature ionic liquid/nickel hexacyanoferarrate nanoparticles composite electrode, Colloids and Surfaces B: Biointerfaces, 88 (2011).
DOI: 10.1016/j.colsurfb.2011.08.011
Google Scholar
[5]
M. H. Mashhadizadeh, M. Akbarian, Voltammetric determination of some anti-malarial drugs using a carbon paste electrode modified with Cu(OH)2 nano-wire, Talanta, 78 (2009) 1440-1445.
DOI: 10.1016/j.talanta.2009.02.040
Google Scholar
[6]
S. Shahrokhian, M. Ghalkhani, M.K. Amini, Application of carbon-paste electrode modified with iron phthalocyanine for voltammetric determination of epinephrine in the presence of ascorbic acid and uric acid, Sensors and Actuators B, 137 (2009).
DOI: 10.1016/j.snb.2009.01.022
Google Scholar
[7]
M.E. Lozano-Chaves, J.M. Palacios-Santander, L.M. Cubillana-Aguilera, Modified carbon- paste electrodes as sensors for the determination of 1, 4-benzodiazepines: Application to the determination of diazepam and oxazepam in biological fluids, Sensors and Actuators B, 115 (2006).
DOI: 10.1016/j.snb.2005.10.021
Google Scholar
[8]
Y.H. Wu, X.Y. Mao, X.J. Cui, Electroanalytical application of graphite nanofibers paste electrode, Sensors and Actuators B: Chemical, 145 (2010) 749-755.
DOI: 10.1016/j.snb.2010.01.037
Google Scholar
[9]
Y.S. Singh, L.E. Sawarynski, P.D. Dabiri, Head-to-head comparisons of carbon fiber microelectrode coatings for sensitive and selective neurotransmitter detection by voltammetry, Anal. Chem. 83 (2011) 6658-6666.
DOI: 10.1021/ac2011729
Google Scholar
[20]
X.Q. Lin, G.F. Kang, Y. Chai, A Nafion and choline Bi-layer modified carbon fiber electrode for in-vivo detection of dopamine in mouse cerebrum, Chin J Anal Chem. 36 (2008) 157-161.
DOI: 10.1016/s1872-2040(08)60016-x
Google Scholar
[21]
G. Munteanua, E. Dempsey, T. McCormac, Novel ultrasensitive and ultrafast voltammetric determination of biological aminochromes on the copper nanodoped mercury monolayer carbon fiber electrode, Journal of Electroanalytical Chemistry, 650 (2010).
DOI: 10.1016/j.jelechem.2010.08.016
Google Scholar
[22]
Y. Xu, J. Zhu, X.Y. Zhang, Aligned carbon nanotube microelectrode for the electrochemical detection of 5-HT neurotransmitter, Chinese Sci Bull (Chinese Ver), 56 (2011) 1790-1793.
DOI: 10.1360/972010-2129
Google Scholar
[23]
X.G. Zhou, C.Y. Zheng, J.Y. Sun, Analysis of nephroloxic and carcinogenic aristolochic acids in Aristolochia plants by capillary electrophoresis with electrochemical detection at a carbon fiber microdisk electrode, Journal of Chromatography A, 1109 (2006).
DOI: 10.1016/j.chroma.2005.12.072
Google Scholar
[24]
H. Cheng, J.H. Wu, R.S. Chen, Comparison of four carbon fiber electrodes in microfluidic chip integrated with electrochemical detector, Chin. J. Anal. Chem. 36 (2008) 1-6.
Google Scholar
[25]
Q.Y. Chen, D.M. Gruen, A.R. Krauss, The structure and electrochemical behavior of nitrogen-containing nanocrystalline diamond films deposited from CH4/N2/Ar mixtures, Journal of The Electrochemical Society, 148 (2001) E44-E51.
DOI: 10.1149/1.1344550
Google Scholar
[26]
Y. Show, M.A. Witek, P. Sonthalia, Characterization and electrochemical responsiveness of boron-doped nanocrystalline diamond thin-film electrodes, Chem. Mater. 15 (2003) 879-888.
DOI: 10.1021/cm020927t
Google Scholar
[27]
Y.V. Pleskov, Electrochemistry of diamond: A Review, Russian Journal of Electrochemistry, 38 (2002) 1275-1291.
Google Scholar
[28]
M. Panizza, G. Cerisola, Application of diamond electrodes to electrochemical processes, Electrochimica Acta. 51 (2005) 191-199.
DOI: 10.1016/j.electacta.2005.04.023
Google Scholar
[29]
J. Wu, X.L. Li, X.M. Wu, Electrochemical detection of clenbuterol in pig liver at pyrrole-DNA modified boron-doped diamond electrode, Chem. Res. Chinese U. 21 (2005) 517-521.
Google Scholar
[30]
P. Zhong, D.B. Luo, Y. Ren, Electrochemical detection of biapenem by a boron-doped diamond nanorod electrode, Chemical Research and Application, 23 (2011) 1246-1249.
Google Scholar
[31]
A. Levent, Electrochemical determination of melatonin hormone using a boron-doped diamond electrode, Diamond & Related Materials, 21 (2012) 114-119.
DOI: 10.1016/j.diamond.2011.10.018
Google Scholar
[32]
D. Shin, B.V. Sarada, D.A. Tryk, Application of diamond microelectrodes for end-column electrochemical detection in capillary electrophoresis, Anal. Chem. 75 (2003) 530-534.
DOI: 10.1021/ac020513j
Google Scholar
[33]
J. Wang, G. Chen, M.P. Chatrathi, Microchip capillary electrophoresis coupled with a boron-doped diamond electrode-based electrochemical detector, Anal. Chem. 75 (2003) 935-939.
DOI: 10.1021/ac0262053
Google Scholar
[34]
A. Qureshi, W.P. Kang, J.L. Davidson, Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications, Diamond & Related Materials, 18 (2009) 1401-1420.
DOI: 10.1016/j.diamond.2009.09.008
Google Scholar
[35]
R. Maalouf, H. Chebib, Y. Saikali, Characterization of different diamond-like carbon electrodes for biosensor design, Talanta, 72 (2007) 310-314.
DOI: 10.1016/j.talanta.2006.10.025
Google Scholar
[36]
G.C. Yang, E. Liu, N.W. Khun, Direct electrochemical response of glucose at nickel-doped diamond like carbon thin film electrodes, J. Electroanal. Chem. 627 (2009) 51-57.
DOI: 10.1016/j.jelechem.2008.12.019
Google Scholar
[37]
J. Kim, J. Pyun, Electrochemical ELISA using diamond-like carbon (DLC) microelectrode for RA diagnosis, Procedia Chemistry, 1 (2009) 1047-1050.
DOI: 10.1016/j.proche.2009.07.261
Google Scholar
[38]
R. Ryoo, S.H. Joo, S. Jun, Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation, J. Phys. Chem. B. 103 (1999) 7743-7746.
DOI: 10.1021/jp991673a
Google Scholar
[39]
J.J. Feng, J.J. Xu, H.Y. Chen, Direct electron transfer and electrocatalysis of hemoglobin adsorbed on mesoporous carbon through layer-by-layer assembly, Biosensors and Bioelectronics, 22 (2007) 1618-1624.
DOI: 10.1016/j.bios.2006.07.022
Google Scholar
[40]
N.Q. Jia, Z.Y. Wang, G.F. Yang, Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine, Electrochemistry Communications, 9 (2007) 233-238.
DOI: 10.1016/j.elecom.2006.08.050
Google Scholar
[41]
B.Y. Dong, Y.L. Chen, Preparation of ordered mesoporous carbon-chitosan film modified electrode and its catalytic oxidation of ascorbic acid, Journal of Analytical Science, 26 (2010) 315-318.
Google Scholar
[42]
G.Z. Hu, Y. Guo, S.J. Shao, Ultrasensitive electrochemical sensing of the anticancer drug tirapazamine using an ordered mesoporous carbon modified pyrolytic graphite electrode, Biosensors and Bioelectronics, 24 (2009) 3391-3394.
DOI: 10.1016/j.bios.2009.04.028
Google Scholar
[43]
Y. Yue, G.Z. Hu, M.B. Zheng, A mesoporous carbon nanofiber-modified pyrolytic graphite electrode used for the simultaneous determination of dopamine, uric acid, and ascorbic acid, Carbon, 50(2012) 107-114.
DOI: 10.1016/j.carbon.2011.08.013
Google Scholar
[44]
D. Zheng, J.D. Ye, L. Zhou, Simultaneous determination of dopamine, ascorbic acid and uric acid on ordered mesoporous carbon/Nafion composite film, Journal of Electroanalytical Chemistry, 625 (2009) 82-87.
DOI: 10.1016/j.jelechem.2008.10.012
Google Scholar
[45]
J.C. Ndamanisha, L.P. Guo, Electrochemical determination of uric acid at ordered mesoporous carbon functionalized with ferrocenecarboxylic acid-modified electrode, Biosensors and Bioelectronics, 23 (2008) 1680-1685.
DOI: 10.1016/j.bios.2008.01.026
Google Scholar
[46]
H.J. Yang, B.P. Lu, B. Qi, Voltammetric sensor based on ordered mesoporous carbon for folic acid determination, Journal of Electroanalytical Chemistry, 660 (2011) 2-7.
DOI: 10.1016/j.jelechem.2011.04.023
Google Scholar
[47]
X. Yan, X.J. Bo, L.P. Guo, Electrochemical behaviors and determination of isoniazid at ordered mesoporous carbon modified electrode, Sensors and Actuators B, 155 (2011) 837-842.
DOI: 10.1016/j.snb.2011.01.058
Google Scholar
[48]
H. Wang, B. Qi, B.P. Lu, Comparative study on the electrocatalytic activities of ordered mesoporous carbons and graphene, Electrochimica Acta. 56 (2011) 3042-3048.
DOI: 10.1016/j.electacta.2010.12.099
Google Scholar