[1]
P. Bartos, Review paper: Bond in fiber reinforced cements and concretes, The International Journal of Cement Composites, 3 (1981) 159-177.
DOI: 10.1016/0262-5075(81)90049-x
Google Scholar
[2]
R. Eligehausen, E.P. Popov, V.V. Bertero, Local bond stress-slip relationships of deformed bars under generalized excitations, Rep. No. 83/23, Earthquake Engineering Research Center. (EERC), University of California, Berkeley, California. (1983).
Google Scholar
[3]
A.H. Nilson, Internal measurement of bond-slip, ACI, 69 (1972) 439-441.
Google Scholar
[4]
Z.M. Teng, J. Lin, Local bond stress-slip relationships for cyclic reversal loadings, Ph.D. thesis, Tsinghua University, Beijing, China, (1998).
Google Scholar
[5]
Y.Q. Wang, F.Z. Wang, Simulation of bond-slip relationship between concrete and reinforcing bar in ANSYS, Journal of Tianjin University, 39 (2006) 209-213.
Google Scholar
[6]
X.W. Liang, Y.X. Ye, The nonlinear analysis of concrete structures, China Architecture & Building Press, Beijing, China, (2007).
Google Scholar
[7]
E. Vos, H.W. Reinhardt, Influence of loading rate on bond behavior of reinforcing steel and prestressing strands, Materials and Structures, 15 (1982) 3-10.
DOI: 10.1007/bf02473553
Google Scholar
[8]
L.J. Malvar, Bond stress-slip characteristics of FRP rebars, Rep. TR-2013-SHR, Naval Facilities Engineering Service Center, Port Hueneme, California. (1994).
Google Scholar
[9]
E. Cosenza, G. Manfredi, R. Realfonzo, Bond characteristics and anchorage length of FRP rebars, in Proceedings of the 2nd International Conference on Advanced Composite Materials in Bridges and Structures, Montreal: M.M. El-Badry, 1996, pp.11-14.
Google Scholar
[10]
E. Cosenza, G. Manfredi, R. Realfonzo, Behavior and modeling of bond of FRP rebars to concrete, Journal of Composites for Construction, 1 (1997) 40-51.
DOI: 10.1061/(asce)1090-0268(1997)1:2(40)
Google Scholar
[11]
F. Focacci, A. Nanni, C.E. Bakis, Local bond-slip relationship for FRP reinforcement in concrete, Journal of Composites for Construction, 2 (2000) 24-31.
DOI: 10.1061/(asce)1090-0268(2000)4:1(24)
Google Scholar
[12]
H. Reinhardt, W. Blaauwendraad, J.E. Vos, Prediction of bond between steel and concrete by numerical analysis, Materials and Structures, 17 (1984) 311-320.
DOI: 10.1007/bf02479089
Google Scholar
[13]
H.W. Reinhardt, H.A. Kormeling, A.J. Zislinski, The split Hopkinson bar, a versatile tool for the impact testing of concrete, Materials and Structures, 19 (1986) 55-63.
DOI: 10.1007/bf02472311
Google Scholar
[14]
J.H. Weathersby, Investigation of bond slip between concrete and steel reinforcement under dynamic loading conditions, Ph.D. thesis, Louisiana State University and Agricultural and Mechanical College, May (2003).
DOI: 10.31390/gradschool_dissertations.1649
Google Scholar
[15]
X.D. Li, L. Ye, K.X. Liu, Experimental and calculative research on the dynamic bond strength of the interface between steel and cement morta, Acta Scientiarum Naturalium Universtiy Pekinensis, 44 (2008) 1-5.
Google Scholar
[16]
H. Wu, Y. Lu, F. Huang, et al, Numerical simulation about dynamic bond-slip between reinforcing steel bar and concrete, DYMAT, (2009) 1669-1676. DOI: 10. 1051/dymat/2009236.
DOI: 10.1051/dymat/2009236
Google Scholar
[17]
M. Haskett, D.J. Oehlers, M.S. Mohamed Ali, Local and global bond characteristics of steel reinforcing bars, Engineering Structures, 30 (2008) 376-383.
DOI: 10.1016/j.engstruct.2007.04.007
Google Scholar
[18]
M.S. Mohamed Ali, D.J. Oehlers, R. Seracino, Vertical shear interaction model between external FRP transverse plates and internal steel stirrups, Engineering Structures, 28 (2006) 381-389.
DOI: 10.1016/j.engstruct.2005.08.010
Google Scholar
[19]
D.J. Oehlers, R. Seracino, Design of FRP and steel plated RC structures, Elsevier, Oxford, (2004).
DOI: 10.1016/b978-008044548-9/50008-2
Google Scholar
[20]
G. Solomos, M. Berra, Testing of anchorages in concrete under dynamic tensile loading, Material and Structures, 39 (2006) 695-706.
DOI: 10.1617/s11527-006-9112-1
Google Scholar
[21]
H. Kolsky, An investigation of the mechanical properties of materials at very high rates of loading, Proceedings of physics Society, B62 (1949) 676.
Google Scholar
[22]
X. Bi, Z. Li, P.H. Geubelle, J. Lambros, Dynamic Fiber Debonding and Frictional Push-out in Model Composite Systems: Numerical Observations, Mechanics of Materials, 34 (2002) 433-446.
DOI: 10.1016/s0167-6636(02)00141-2
Google Scholar
[23]
Z.H. Li, X.P. Bi, J. Lambros, H.P. Geubelle, Dynamic fiber debonding and frictional push-out in model composite systems: experimental observations, Experimental Mechanics, 42 (2002) 417-425.
DOI: 10.1177/001448502321548256
Google Scholar
[24]
R.J. Kerans, T.A. Parthasarathy, Theoretical analysis of the fiber pull-out and push-out tests, Journal American Ceramic Society, 74 (1991) 1585-1596.
DOI: 10.1111/j.1151-2916.1991.tb07144.x
Google Scholar
[25]
V.T. Bechel, N.R. Sottos, Application of debond length measurements to examine the mechanics of fiber push-out, Experimental Mechanics, (1994) 171-180.
DOI: 10.1016/s0022-5096(97)00040-9
Google Scholar