Flow Microsensor of Thermal Type for Measurements of Gas Fluxes

Article Preview

Abstract:

An analytical model of the flow sensor of thermal type is developed. The results of the model application are used to develop a flow microsensor of thermal type with optimal functional characteristics. The technology of microsensor manufacturing is provided. The prototype of the microsensor suitable for use in the mass air flow meter is created. The basic characteristics of the microsensor are presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

118-125

Citation:

Online since:

December 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Beeby, G. Ensell, M. Kraft, N. White, MEMS Mechanical Sensors, Artech House Inc., Boston, London, (2004).

Google Scholar

[2] L. Huang, C. Chen, Y. Yao, G. Wang, U.S. Patent No. 7878056 (1 February 2011); G. Wang, C. Chen, Y. Yao, L. Huang, U.S. Patent No. 7536908 (6 May 2009); Y. Yamashita, Y. Oshima, U.S. Patent No. 7549332 (23 June 2009); J. W. Speldrich, U.S. Patent No. 7603898 (20 October 2009); T. E. Plowman, W. R. Jewett, U.S. Patent No. 7500392 (10 March 2009); H. Nakano, I. Watanabe, M. Yamada, M. Matsumoto, U.S. Patent No. 7360415 (22 April 2008); R. E. Higashi, E. A. Satren, U.S. Patent No. 7408133 (5 August 2008); N. Hiroshi, Y. Masamichi, M. Masahiro, W. Izumi, European Patent No. 2060880 (20 May 2009).

DOI: 10.1016/j.wpi.2009.06.007

Google Scholar

[3] W. J. Fleming, Overview of Automotive Sensors, IEEE Sensors Journal 1 (2001) 296–308.

Google Scholar

[4] J. Marek, M. Illing, Microsystems for the Automotive Industry, in: Proc. International Electron Devices Meeting (2000), San Francisco, CA, p.3–8.

Google Scholar

[5] W.C. Shin, R.S. Besser, A micromachined thin-film gas flow sensor for microchemical reactors, J. Micromech. Microeng. 16 (2008) 731–41.

DOI: 10.1088/0960-1317/16/4/009

Google Scholar

[6] L. Scholer, B. Lange, K. Seibel, H. Schafer, M. Walder, N. Friedrich, D. Ehrhardt, F. Schonfeld, G. Zech, M. Bohm, Monolithically integrated micro flow sensor for lab-on-chip applications, Microelectron. Eng. 78–79 (2005) 164–170.

DOI: 10.1016/j.mee.2004.12.022

Google Scholar

[7] P. A. Oberg, Sensors Applications, in Sensors in Medicine and Health Care, Weinheim: Wiley-VCH Verlag, (2004).

Google Scholar

[8] M. Domínguez, V. Jiménez, J. Ricart, L. Kowalski, J. Torres, S. Navarro, J. Romeral, L. Castañer, A hot film anemometer for the Martian atmosphere, Planetary and Space Science 56 (2008) 1169-1179.

DOI: 10.1016/j.pss.2008.02.013

Google Scholar

[9] J. Kang et al., Comfort Sensing System for Indoor Environment, Proc. Transducers (1997) Chicago, IL, p.311–314.

Google Scholar

[10] A. van den Berg, T.S.J. Lammerink, Micro Total Analysis Systems: Microfluidic aspects, integration concept and applications, in: Microsystem Technology in Chemistry and Life Science 194, Springer, Berlin, 1998, pp.21-49.

DOI: 10.1007/3-540-69544-3_2

Google Scholar

[11] O. Sazhin, Gas flow through a slit into a vacuum in a wide range of rarefactions, J. Exp. Theor. Phys. 107 (2008) 162-169.

DOI: 10.1134/s1063776108070170

Google Scholar

[12] O. Sazhin, Rarefied gas flow through a channel of finite length into a vacuum. J. Exp. Theor. Phys. 109 (2009) 700-706; J. Exp. Theor. Phys. 111, (2010) 1054.

DOI: 10.1134/s1063776109100161

Google Scholar

[13] S. Varoutis, D. Valougeorgis, O. Sazhin, F. Sharipov, Rarefied gas flow through short tubes into vacuum, J. Vac. Sci. Technol. A 26 (2008) 228-238.

DOI: 10.1116/1.2830639

Google Scholar

[14] O.V. Sazhin, S.F. Borisov, F. Sharipov, Accommodation coefficient of tangential momentum on atomically clean and contaminated surfaces, J. Vac. Sci. Technol. A 19 (2001) 2499-2503; J. Vac. Sci. Technol. A 20, (2002) 957.

DOI: 10.1116/1.1459081

Google Scholar

[15] O.V. Sazhin, S.F. Borisov, Influence of the State of a Surface on the Formation of a Rarefied Gas Flow in a Channel, J. Eng. Phys. Thermophys. 74 (2001) 1232-1238.

Google Scholar

[16] O. Sazhin, Impact of the gas-surface scattering and gas molecule-molecule interaction on the mass flow rate of the rarefied gas through a short channel into a vacuum, J. Vac. Sci. Technol. A 28 (2010) 1393-1398.

DOI: 10.1116/1.3504596

Google Scholar

[17] O. Sazhin, A. Kulev, S. Borisov, S. Gimelshein, Numerical analysis of gas–surface scattering effect on thermal transpiration in the free molecular regime, Vacuum 82 (2008) 20–29.

DOI: 10.1016/j.vacuum.2007.03.001

Google Scholar

[18] O.V. Sazhin, A. N. Kulev, S. F. Borisov, Role of the Surface Structure in Formation of a Rarefied Gas Flow in a Channel, J. TermoPhysics and Aeromechanics 8 (2001) 391-399 (in Russian).

Google Scholar

[19] O. Sazhin, Pressure-driven flow of rarefied gas through a slit at a various pressure ratios, J. Vac. Sci. Tech. A 30 (2012) 021603.

DOI: 10.1116/1.3682457

Google Scholar

[20] T.S.J. Lammermk, N.R. Tas, M. Elwenspoek, J.H.J. Flultman, Micro-liquid flow sensor, Sensors and Actuators A 37-38 (1993) 45-50.

DOI: 10.1016/0924-4247(93)80010-e

Google Scholar

[21] H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solid, Clarendon Press, Oxford, (1959).

Google Scholar