[1]
T. Udiljak, D. Ciglar, S. Skoric, Investigation into bone drilling and thermal bone necrosis, Advances in Production Engineering and Management 2 (2007) 103-112.
Google Scholar
[2]
H.T. Hillery, I. Shuaib, Temperature effects in drilling of human and bovine bone, Journal of material processing technology 92-93 (1999) 302-308.
DOI: 10.1016/s0924-0136(99)00155-7
Google Scholar
[3]
R.A. Eriksson, T. Albrektsson, B. Magnusson, Assesment of bone viability after heat trauma. A histological, histochemical and vital microscopic study in the rabbit , Scand J Plast Reconstr Surg 18 (1984) 261–268.
DOI: 10.3109/02844318409052849
Google Scholar
[4]
A.R. Moritz, F.C. Henriques, Studies of Thermal Injury II. The Relative Importance of Time and Surface Temperature in the Causation of Cutaneous Burns, Americam Journal of Pathology 23 (1947) 695-720.
Google Scholar
[5]
J. Lundskog, Heat and Bone Tissue, Scandinavian Journal of Plastic and Reconstructive Surgery supplementum 9 (1972).
Google Scholar
[6]
R.A. Eriksson, T. Albrektsson, Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit, Journal of Prosthetic Dentistry 50 (1983) 101-7.
DOI: 10.1016/0022-3913(83)90174-9
Google Scholar
[7]
R.A. Eriksson, T. Albrektsson, The effect of heat on bone regeneration: An experimental study in the rabbit using bone growth chamber, Journal of Oral and Maxillofacial surgery 42 (1984) 705-711.
DOI: 10.1016/0278-2391(84)90417-8
Google Scholar
[8]
R.A. Eriksson, T. Albrektsson, B. Albrektsson, Heat caused by drilling cortical bone. Temperature measured in vivo in patients and animals, Acta Orthopaedic scandinavica 55 (1984(a) 629-641.
DOI: 10.3109/17453678408992410
Google Scholar
[9]
G. Augustin, S. Davila, K. Mihoci T. Udiljak, D.S. Vedrina, A. Antabak, Thermal Osteonecrosis and Bone Drilling Parameters Revisited, Arch Orthop Trauma Surg 128 (2008) 71-77.
DOI: 10.1007/s00402-007-0427-3
Google Scholar
[10]
F.G. Pallan, Histological change in bone after insertion of skeletal fixation pins, Journal of oral surgery, Anesthesia and Hospital Dental Services 18 (1960) 400-408.
Google Scholar
[11]
B. Latha, V.S. Senthilkumar, Analysis of thrust force in drilling glass fibre- reinforced plastic composites using fuzzy logic. Materials and Manufacturing processes 24: 4 (2009) 509-516.
DOI: 10.1080/10426910802714688
Google Scholar
[12]
S.V. Wong, M.A. Hamouda A.M. S El Baradie, Development of a fuzzy based expert system for metal cutting data selection, Int J Flexi Automat Integr Manuf 5 (1997) 79–104.
Google Scholar
[13]
V. Kalidindi, Optimization of drill design and coolant systems during dental implant surgery, MS thesis, University of Kentucky, (2004).
Google Scholar
[14]
T. Ueda, A. Wada, K. Hasegawa, Y. Endo, Y. Takikawa, T. Hasegawa, T. Hara, Design optimization of surgical drills using the Taguchi method, Journal of biomechanical science and engineering (2010) Vol. 5, No. 5.
DOI: 10.1299/jbse.5.603
Google Scholar
[15]
L. Zadeh, Fuzzy sets. Information and Control 8 (1965) 338–353.
Google Scholar
[16]
B. Latha, V. S. Senthilkumar, Modeling and Analysis of Surface Roughness Parameters in Drilling GFRP Composites Using Fuzzy Logic. Materials and Manufacturing Processes 25: 8 (2010) 817-827.
DOI: 10.1080/10426910903447261
Google Scholar
[17]
S. Ramesh, L. Karunamoorthy, K. Palanikumar, Fuzzy Modelling and Analysis of Machining Parameters in Machining Titanium alloy, Materials and Manufacturing Processes 23 (2008) 439-447.
DOI: 10.1080/10426910801976676
Google Scholar
[18]
J.L. Lin, K.S. Wang, B.H. Yan, Y.S. Tarng, Optimization of the electrical discharge machining process based on the Taguchi method with fuzzy logic, Journal of Materials Processing Technology 102 (2000) 48–55.
DOI: 10.1016/s0924-0136(00)00438-6
Google Scholar
[19]
D.C. Montgomery, Design and Analysis of Experiments, John Wiley and Sons, New York, (1991).
Google Scholar