[1]
H.B. Wiliam. Deep impact mission design. Space Science Reviews. 117(2005) 23-42.
Google Scholar
[2]
Maldonado, A. L, Baylocq, M, and Hannan, G. Autonomous spacecraft navigation – extended Kalman filter estimation of classical orbital parameters. AIAA Guidance, Navigation, and Control Conference. 1984; pp.9-18.
DOI: 10.2514/6.1984-1822
Google Scholar
[3]
Graven J P, Collins J T, Suneel I S et al. XNAV for Deep Space Navigation. 31st annual AAS guidance and control conference, Breckenridge, Colorado, (2008).
Google Scholar
[4]
Josep Sala, Andreu Urruela, Xavier Villares et al. Feasibility Study for a Spacecraft Navigation System relying on Pulsar Timing Information. ARIADNA Study 03/4202, (2004).
Google Scholar
[5]
Xiong, Kai, Wei Chunling, Liu, L.D. The use of X-ray pulsars for aiding navigation of satellites in constellations, Acta Astronaut. 64 (2009) 427–436.
DOI: 10.1016/j.actaastro.2008.09.005
Google Scholar
[6]
Huang Liangwei, Liang Bin, Zhang Tao, et al. Navigation using binary pulsars, Science China: Physics, Mechanics and Astronomy. 55(2012) 527-539.
DOI: 10.1007/s11433-012-4626-8
Google Scholar
[7]
Paul G, John C, Suneel I S et al. XNAV Beyond the Moon. ION 63rd Annual Meeting, Cambridge, Massachusetts, (2007).
Google Scholar
[8]
Suneel I S, Ronald W H, Richard A M. High-Order Pulsar Timing For Navigation. ION 63rd Annual Meeting, Cambridge, Massachusetts, (2007).
Google Scholar
[9]
Amir A. Emadzadeh, Jason L. Speyer. On modeling and Pulse Phase Estimation of X-ray Pulsars. IEEE Transactions on Signal Processing. 58 (2010) 4484-4495.
DOI: 10.1109/tsp.2010.2050479
Google Scholar
[10]
Xiong, Kai, Wei Chunling, Liu, L.D. Robust Kalman filtering for discrete-time nonlinear systems with parameter uncertainties, Aerospace Science and Technology. 18 (2012) 15-24.
DOI: 10.1016/j.ast.2011.03.012
Google Scholar
[11]
Liu Jin, Ma Jie, Tian Jinwen, et al. Pulsar/CNS integrated navigation based on federated UKF. Journal of Systems Engineering and Electronics. 21 (2010) 673-681.
DOI: 10.3969/j.issn.1004-4132.2010.04.022
Google Scholar
[12]
Liu Jin, Ma Jie, Tian Jinwen, et al. CNS/Pulsar integrated navigation using two-level filter. Chinese Journal of Electronics. 19 (2010) 265-269.
Google Scholar
[13]
Zheng Guanglou. Liu jianye, Qiao Li et al. Observability analysis of satellite autonomous navigation system using single pulsar. Journal of Applied Sciences-Electronics and Information Engineering. 26 (2008) 506-510. [in Chinese].
Google Scholar
[14]
Battin R.H. An introduction to the mathematics and methods of astrodynamics. New York: AIAA, 1999, pp.112-113.
Google Scholar
[15]
Dennis W, Woodfork. The use of X-Ray pulsars for aiding GPS satellite orbit determination. Master thesis, Air Force Institute of Technology, (2005).
Google Scholar
[16]
Suneel I, Sheikh. The use of variable celestial X-Ray sources for spacecraft navigation. Doctoral thesis, University of Maryland, (2005).
Google Scholar
[17]
Amir A. Emadzadeh, Jason L. Speyer. X-ray Pulsar-based Relative Navigation using Epoch Folding. IEEE transactions on aerospace and electronic systems. 47 (2011) 2317-2327.
DOI: 10.1109/taes.2011.6034635
Google Scholar
[18]
X. L. Ning, J. C. Fang. Spacecraft autonomous navigation using unscented particle filter-based celestial/Doppler information fusion. Measurement Science and Technology, 19 (2008) 1–8. [in Chinese].
DOI: 10.1088/0957-0233/19/9/095203
Google Scholar
[19]
Paul J. Huxel and Robert H. Bishop. Navigation Algorithms and Observability Analysis for Formation Flying Missions. Journal of Guidance, Control and Dynamics, 32 (2009) 1218-1231.
DOI: 10.2514/1.41288
Google Scholar
[20]
Horn, R. A., and Johnson, C. R. Matrix analysis. Cambridge: Cambridge Univ. Press, 1985, pp.231-234.
Google Scholar