Electronic Structures and Spectral Properties of the Emitting Molecule Rhenium (I) Tricarbonyl Containing Naphthalimide Ring in Chemical Manufacturing System

Article Preview

Abstract:

Rhenium (I) tricarbonyl complexes comprise an important class of luminescent materials in chemical manufacturing system. A Re(I) complexes, Re(CO)3(phen-PIN)(Cl) (1), where PNI = 4-piperidinyl-1,8-naphthalimide, was investigated using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The optimized ground structures show that the phen ring is not coplanar with the naphthalimide ring. The HOMO is π character, while the LUMO is π* orbitals of the phen ligands. The lowest lying absorption band of the complexes has the HOMO → LUMO+1 transition configurations resulting in the LLCT/ILCT characters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

306-309

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.S. Wrighton, D.L. Morse, J. Am. Chem. Soc. 96 (1974) 998-1003.

Google Scholar

[2] V. Balzani, A. A. Juris, M. Ventyri, S. Campagna, S. Serroni, Chem. Rev. 96 (1996) 759-833.

Google Scholar

[3] L. Sacksteder, A.P. Zipp, E.A. Brown, J. Streich, J.N. Demas, B.A. DeGraff, Inorg. Chem. 29 (1990) 4335-4340.

DOI: 10.1021/ic00346a033

Google Scholar

[4] M.M. Richter, J.D. Debad, D.R. Striplin, G.A. Crosby, A.J. Bard, Anal. Chem. 68 (1196) 4370-4376.

DOI: 10.1021/ac9606160

Google Scholar

[5] S. Ranjan, S.Y. Lin, K.C. Hwang, Y. Chi, W.L. Ching, C.S. Liu, Y.T. Tao, C.H. Chien, S.M. Peng, G.H. Lee, Inorg. Chem. 42 (2003) 1248-1255.

DOI: 10.1021/ic0259181

Google Scholar

[6] P. Spellane, R.J. Watts, A. Vogler, Inorg. Chem. 32 (1993) 5633-5636.

Google Scholar

[7] M.E. Bluhm, M. Ciesielski, W.O. Gorls, M. Doring, Inorg. Chem. 42 (2003) 8878-8885.

Google Scholar

[8] L. Salassa, C. Garino, A. Albertino, G. Volpi, C. Nervi, R. Gobetto, K.I. Hardcastle, Organometallics. 27 (2008) 1427-1435.

DOI: 10.1021/om701175z

Google Scholar

[9] G. Accorsi, A. Listorti, K. Yoosaf, N. Armaroli, Chem. Soc. Rev. 38 (2009) 1690-1700.

Google Scholar

[10] M. Busby, A. Gabrielsson, P. Matousek, M. Towrie, A.J. Di Bilio, H.B. Gray, A. Vlcek Jr, Inorg. Chem. 43 (2004) 4994-5002.

Google Scholar

[11] J.E. Yarnell, J.C. Deaton, C.E. McCusker, F.N. Castellano, Inorg. Chem. 50 (2011) 7820-7830.

Google Scholar

[12] A.D. Becke, J. Chem. Phys. 98 (1993) 5648-5652.

Google Scholar

[13] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78 (1997) 1396-1396.

DOI: 10.1103/physrevlett.78.1396

Google Scholar

[14] B. Mennucci, J. Tomasi, J. Chem. Phys. 106 (1997) 5151-5158.

Google Scholar

[15] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr.T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada,M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian09, Revison A 02, Gaussian Inc., Pittsburgh PA, (2009).

Google Scholar