[1]
F. Fukuda, T. Mitachi, and S. Shibuya: Induced anisotropy appeared in the deformation and strength of remolded clay. Soils and Foundations, Vol. 37(4), pp.139-148 (1997)
DOI: 10.3208/sandf.37.4_139
Google Scholar
[2]
D.W. Hight, A. Gens, and M.J. Symes: The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils. Geotechnique, Vol. 33(4), pp.355-383 (1983)
DOI: 10.1680/geot.1983.33.4.355
Google Scholar
[3]
S. Yimsiri, W. Ratananikom, and S. Likitlersuang: Investigation of some anisotropic characteristics of Bangkok Clay. 17th ICSMGE, Egypt, Vol. 1, pp.1068-1071 (2009)
Google Scholar
[4]
D. Wijewickreme, and Y.P. Vaid: Stress nonuniformities in hollow cylinder torsional specimens. Geotechnical Testing Journal, Vol. 14(4), pp.349-362 (1991)
DOI: 10.1520/gtj10203j
Google Scholar
[5]
L. Zdravkovic and R.J. Jardine: Undrained anisotropy of Ko-consolidated silt. Canadian Geotechnical Journal, Vol. 37(1), pp.178-200 (2000)
DOI: 10.1139/t99-094
Google Scholar
[6]
Md. Kumruzzaman and J.H. Yin: Influence of principal stress direction and intermediate principal stress on the stress-strain-strength behaviour of completely decomposed granite. Canadian Geotechnical Journal, Vol. 47(2), pp.164-179 (2010)
DOI: 10.1139/t09-079
Google Scholar
[7]
A. Prashant and S. Penumadu: A laboratory study of normally consolidated kaolin clay. Canadian Geotechnical Journal, Vol. 42(1), pp.27-37 (2005)
DOI: 10.1139/t04-076
Google Scholar
[8]
A. Prashant and S. Penumadu: Effect of microfabric on mechanical behavior of kaolin clay using cubical true triaxial testing. J. of Geotech. and Geoenviron. Engg., Vol. 133(4), pp.433-444 (2007)
DOI: 10.1061/(asce)1090-0241(2007)133:4(433)
Google Scholar
[9]
J. Kuwano and B.N. Bhattarai: Deformation characteristics of Bangkok Clay under three dimensional stress conditions. Geotecnical Engineering, Vol. 20(2), pp.111-137 (1989)
Google Scholar
[10]
M.M. Kirkgard and P.V. Lade: Anisotropic three-dimensional behavior of a normally consolidated clay. Canadian Geotechnical Journal, Vol. 30(5), pp.848-858 (1993)
DOI: 10.1139/t93-075
Google Scholar
[11]
D.M. Potts and L. Zdravkovic: Finite element analysis in geotechnical engineering: Theory, Thomas Telford (1999)
Google Scholar
[12]
L. Callisto and G. Calabresi: Mechanical behavior of a natural soft clay. Geotechnique, Vol. 48 (4), pp.495-513 (1998)
DOI: 10.1680/geot.1998.48.4.495
Google Scholar
[13]
L. Callisto and S. Rampello: Shear strength and small-strain stiffness of a natural clay under general stress conditions. Geotechnique, Vol. 52(8), pp.547-560 (2002)
DOI: 10.1680/geot.52.8.547.38830
Google Scholar
[14]
Gramatikopoulou, A. Zdravkovic, L., and Potts, D. M.: The effect of the yield and plastic potential deviatoric surfaces on the failure height of an embankment. Geotechnique Vol., 57 (10), pp.795-806, (2007)
DOI: 10.1680/geot.2007.57.10.795
Google Scholar