A General Form of Constitutive Relations in Non-Smooth Elastoplasticity

Article Preview

Abstract:

A general formulation of constitutive relations in non-smooth elastoplasticity is presented. The treatment applies to general non-smooth plasticity problems and to problems characterized by non-smooth yield criteria or dealing with non-differentiable functions. The mathematical tools and instruments of convex analysis and subdifferential calculus are suitably applied since they provide the proper mathematical instruments for dealing with non-smooth problems and non-differentiable functions. General formulations of constitutive relations and evolutive laws in non-smooth elastoplasticity are illustrated within the presented theoretical framework. Connections between the proposed mathematical treatment and the classical relations in elastoplasticity are illustrated and discussed in detail. The presented generalized treatment is equipped with considerable advantages since it shows to be ideally suited for the development of variational formulations of structural problems in non-smooth elastoplasticity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

979-985

Citation:

Online since:

December 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.T. Koiter, Stress-strain relations, uniqueness, and variational theorems for elastic-plastic material with a singular yield surface, Quart. Appl. Math., Vol. 11, n. 3, pp.350-354, (1953).

DOI: 10.1090/qam/59769

Google Scholar

[2] W.T. Koiter, General theorems for elastic-plastic solids, Progress in Solid Mechanics, Vol. 1, Chapter IV, pp.165-221, North-Holland, Amsterdam, (1960).

Google Scholar

[3] J. Mandel, Generalisation de la theorie de plasticite de W. T. Koiter, Int. J. Solids Structures, Vol. 1, pp.273-295, (1965).

DOI: 10.1016/0020-7683(65)90034-x

Google Scholar

[4] J.C. Simo, J.J. Kennedy and S. Govindjee, Non-smooth multisurface plasticity and viscoplasticity. Loading/unloading conditions and numerical algorithms, Int. J. Num. Meth. Engrg., Vol. 26, pp.2161-2185, (1988).

DOI: 10.1002/nme.1620261003

Google Scholar

[5] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, (1970).

Google Scholar

[6] Hiriart-Urruty, J.B., Lemarechal, C., Convex Analysis and Minimization Algorithms, vol. I-II, Springer-Verlag, (1993).

Google Scholar

[7] Moreau, J.J., On unilateral constraints friction and plasticity, in Centro internazionale matematico estivo (C.I.M.E. ), pp.173-322, Bressanone, (1973).

Google Scholar

[8] Skrzypek, J.J., Hetnarski, R.B., Plasticity and Creep, CRC Press, Boca Raton, (1993).

Google Scholar

[9] Duvaut, G., Lions, J.L., Les Inequations en mecanique et en Physique, Dunot, Paris, (1992).

DOI: 10.2307/2005636

Google Scholar

[10] Lemaitre, J., Chaboche, J.L., Mechanics of Solids Materials, Cambridge University Press, Cambridge, (1990).

Google Scholar

[11] De Angelis, F., A comparative analysis of linear and nonlinear kinematic hardening rules in computational elastoplasticity, Technische Mechanik, Vol. 32, n. 2-5, pp.164-173, (2012).

Google Scholar

[12] Halphen, B., Nguyen, Q.S., Sur les matériaux standard généralisés, J. de Méchanique, Vol. 14, pp.39-63, (1975).

Google Scholar

[13] Hill, R., The Mathematical Theory of Plasticity, Oxford University Press, Oxford, (1950).

Google Scholar

[14] Luenberger, D.G., Introduction to Linear and Non-Linear Programming, Addison-Wesley, Reading, (1973).

Google Scholar

[15] Simo, J.C., Hughes, T.J.R., Computational Inelasticity, Springer-Verlag, New York, (1998).

Google Scholar

[16] De Angelis, F., An internal variable variational formulation of viscoplasticity, Computer Methods in Applied Mechanics and Engineering, Vol. 190, n. 1-2, pp.35-54, (2000).

DOI: 10.1016/s0045-7825(99)00306-0

Google Scholar

[17] De Angelis, F., On constitutive relations in non-smooth elasto/viscoplasticity, Advanced Materials Research, Vol. 566, pp.691-698, (2012).

DOI: 10.4028/www.scientific.net/amr.566.691

Google Scholar

[18] De Angelis, F., Computational issues in rate dependent plasticity models, Advanced Materials Research, Vol. 566, pp.70-77, (2012).

DOI: 10.4028/www.scientific.net/amr.566.70

Google Scholar

[19] De Angelis, F., Computational aspects in the elasto/viscoplastic material behavior of solids, Advanced Materials Research, Vol. 567, pp.192-199, (2012).

DOI: 10.4028/www.scientific.net/amr.567.192

Google Scholar

[20] De Angelis, F., Numerical algorithms for J2 viscoplastic models, Advanced Materials Research, Vol. 567, pp.267-274, (2012).

DOI: 10.4028/www.scientific.net/amr.567.267

Google Scholar

[21] Alfano, G., De Angelis, F., Rosati, L., General solution procedures in elasto/ viscoplasticity, Computer Methods in Applied Mechanics and Engineering, Vol. 190, pp.5123-5147, (2001).

DOI: 10.1016/s0045-7825(00)00370-4

Google Scholar

[22] De Angelis, F., Multifield potentials and derivation of extremum principles in rate plasticity, Materials Science Forum, Vol. 539-543, pp.2625-2630, (2007).

DOI: 10.4028/www.scientific.net/msf.539-543.2625

Google Scholar

[23] De Angelis, F., A variationally consistent formulation of nonlocal plasticity, Int. Journal for Multiscale Computational Engineering, Vol. 5, n. 2, pp.105-116, (2007).

DOI: 10.1615/intjmultcompeng.v5.i2.40

Google Scholar

[24] De Angelis, F., Evolutive laws and constitutive relations in nonlocal viscoplasticity, Applied Mechanics and Materials, Vol. 152-154, pp.990-996, (2012).

DOI: 10.4028/www.scientific.net/amm.152-154.990

Google Scholar

[25] De Angelis, F., Cancellara, D., Modano, M., Pasquino, M., The consequence of different loading rates in elasto/viscoplasticity, Procedia Engineering, Vol. 10, pp.2911-2916, (2011).

DOI: 10.1016/j.proeng.2011.04.483

Google Scholar

[26] De Angelis, F., Cancellara, D., Implications due to different loading programs in inelastic materials, Advanced Material Research, Vol. 422, pp.726-733, (2012).

DOI: 10.4028/www.scientific.net/amr.422.726

Google Scholar

[27] De Angelis, F., Cancellara, D., Results of distinct modes of loading procedures in the nonlinear inelastic behavior of solids, Advanced Material Research, Vol. 482-484, pp.1004-1011, (2012).

DOI: 10.4028/www.scientific.net/amr.482-484.1004

Google Scholar