[1]
W.T. Koiter, Stress-strain relations, uniqueness, and variational theorems for elastic-plastic material with a singular yield surface, Quart. Appl. Math., Vol. 11, n. 3, pp.350-354, (1953).
DOI: 10.1090/qam/59769
Google Scholar
[2]
W.T. Koiter, General theorems for elastic-plastic solids, Progress in Solid Mechanics, Vol. 1, Chapter IV, pp.165-221, North-Holland, Amsterdam, (1960).
Google Scholar
[3]
J. Mandel, Generalisation de la theorie de plasticite de W. T. Koiter, Int. J. Solids Structures, Vol. 1, pp.273-295, (1965).
DOI: 10.1016/0020-7683(65)90034-x
Google Scholar
[4]
J.C. Simo, J.J. Kennedy and S. Govindjee, Non-smooth multisurface plasticity and viscoplasticity. Loading/unloading conditions and numerical algorithms, Int. J. Num. Meth. Engrg., Vol. 26, pp.2161-2185, (1988).
DOI: 10.1002/nme.1620261003
Google Scholar
[5]
R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, (1970).
Google Scholar
[6]
Hiriart-Urruty, J.B., Lemarechal, C., Convex Analysis and Minimization Algorithms, vol. I-II, Springer-Verlag, (1993).
Google Scholar
[7]
Moreau, J.J., On unilateral constraints friction and plasticity, in Centro internazionale matematico estivo (C.I.M.E. ), pp.173-322, Bressanone, (1973).
Google Scholar
[8]
Skrzypek, J.J., Hetnarski, R.B., Plasticity and Creep, CRC Press, Boca Raton, (1993).
Google Scholar
[9]
Duvaut, G., Lions, J.L., Les Inequations en mecanique et en Physique, Dunot, Paris, (1992).
DOI: 10.2307/2005636
Google Scholar
[10]
Lemaitre, J., Chaboche, J.L., Mechanics of Solids Materials, Cambridge University Press, Cambridge, (1990).
Google Scholar
[11]
De Angelis, F., A comparative analysis of linear and nonlinear kinematic hardening rules in computational elastoplasticity, Technische Mechanik, Vol. 32, n. 2-5, pp.164-173, (2012).
Google Scholar
[12]
Halphen, B., Nguyen, Q.S., Sur les matériaux standard généralisés, J. de Méchanique, Vol. 14, pp.39-63, (1975).
Google Scholar
[13]
Hill, R., The Mathematical Theory of Plasticity, Oxford University Press, Oxford, (1950).
Google Scholar
[14]
Luenberger, D.G., Introduction to Linear and Non-Linear Programming, Addison-Wesley, Reading, (1973).
Google Scholar
[15]
Simo, J.C., Hughes, T.J.R., Computational Inelasticity, Springer-Verlag, New York, (1998).
Google Scholar
[16]
De Angelis, F., An internal variable variational formulation of viscoplasticity, Computer Methods in Applied Mechanics and Engineering, Vol. 190, n. 1-2, pp.35-54, (2000).
DOI: 10.1016/s0045-7825(99)00306-0
Google Scholar
[17]
De Angelis, F., On constitutive relations in non-smooth elasto/viscoplasticity, Advanced Materials Research, Vol. 566, pp.691-698, (2012).
DOI: 10.4028/www.scientific.net/amr.566.691
Google Scholar
[18]
De Angelis, F., Computational issues in rate dependent plasticity models, Advanced Materials Research, Vol. 566, pp.70-77, (2012).
DOI: 10.4028/www.scientific.net/amr.566.70
Google Scholar
[19]
De Angelis, F., Computational aspects in the elasto/viscoplastic material behavior of solids, Advanced Materials Research, Vol. 567, pp.192-199, (2012).
DOI: 10.4028/www.scientific.net/amr.567.192
Google Scholar
[20]
De Angelis, F., Numerical algorithms for J2 viscoplastic models, Advanced Materials Research, Vol. 567, pp.267-274, (2012).
DOI: 10.4028/www.scientific.net/amr.567.267
Google Scholar
[21]
Alfano, G., De Angelis, F., Rosati, L., General solution procedures in elasto/ viscoplasticity, Computer Methods in Applied Mechanics and Engineering, Vol. 190, pp.5123-5147, (2001).
DOI: 10.1016/s0045-7825(00)00370-4
Google Scholar
[22]
De Angelis, F., Multifield potentials and derivation of extremum principles in rate plasticity, Materials Science Forum, Vol. 539-543, pp.2625-2630, (2007).
DOI: 10.4028/www.scientific.net/msf.539-543.2625
Google Scholar
[23]
De Angelis, F., A variationally consistent formulation of nonlocal plasticity, Int. Journal for Multiscale Computational Engineering, Vol. 5, n. 2, pp.105-116, (2007).
DOI: 10.1615/intjmultcompeng.v5.i2.40
Google Scholar
[24]
De Angelis, F., Evolutive laws and constitutive relations in nonlocal viscoplasticity, Applied Mechanics and Materials, Vol. 152-154, pp.990-996, (2012).
DOI: 10.4028/www.scientific.net/amm.152-154.990
Google Scholar
[25]
De Angelis, F., Cancellara, D., Modano, M., Pasquino, M., The consequence of different loading rates in elasto/viscoplasticity, Procedia Engineering, Vol. 10, pp.2911-2916, (2011).
DOI: 10.1016/j.proeng.2011.04.483
Google Scholar
[26]
De Angelis, F., Cancellara, D., Implications due to different loading programs in inelastic materials, Advanced Material Research, Vol. 422, pp.726-733, (2012).
DOI: 10.4028/www.scientific.net/amr.422.726
Google Scholar
[27]
De Angelis, F., Cancellara, D., Results of distinct modes of loading procedures in the nonlinear inelastic behavior of solids, Advanced Material Research, Vol. 482-484, pp.1004-1011, (2012).
DOI: 10.4028/www.scientific.net/amr.482-484.1004
Google Scholar