1-Octadecanol/SiO2 Hybrid Form-Stable Phase Change Materials for Thermal Energy Storage

Article Preview

Abstract:

1-Octadecanol/SiO2 hybrid material, as a novel form-stable phase change material for thermal energy storage, was prepared via the sol-gel method. The crystallographic, phase-change, structural, and thermal stability properties of the samples were well characterized by X-Ray Powder Diffraction (XRD), Differential Scanning Calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetry (TG). The results indicated that the 1-octadecanol/SiO2 hybrid material showed typical form-stable phase transition properties, e.g. suitable transition temperature (Tr=56.4 °C), high transition enthalpy (ΔH≥120.8 J/g) and good thermal stability. It is a functional hybrid material with good energy storage effect, and the heat storage mechanism of 1-octadecanol/SiO2 is the transfer between crystalline and amorphous states of the phase change component 1-octadecanol, and the silica serving as “cage-skeleton”, restricted the molecular chain of the 1-octadecanol’s free movement at high temperature. Thus, 1-octadecanol/SiO2 hybrid material can keep its solid state in the transition processing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

22-27

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Castell, C. Sole, M. Medrano, J. Roca, L.F. Cabeza, D. Garc, Natural convection heat transfer coefficients in phase change material (PCM) modules with external vertical fins, Appl. Therm. Eng. 28 (2008) 1676-1686.

DOI: 10.1016/j.applthermaleng.2007.11.004

Google Scholar

[2] M.M. Farid, A.M. Khudhair, S.A.K. Razack, S.A. Hallaj, A review on phase change energy storage: materials and applications, Energ. Convers. Manage. 45 (2004) 1597-1615.

DOI: 10.1016/j.enconman.2003.09.015

Google Scholar

[3] A. Sarı, A. Biçer, A. Karaipekli, Synthesis, characterization, thermal properties of a series of stearic acid esters as novel solid-liquid phase change materials, Mater. Lett. 63 (2009) 1213-1216.

DOI: 10.1016/j.matlet.2009.02.045

Google Scholar

[4] W.D. Li, E.Y. Ding, Preparation and characterization of a novel solid-liquid PCM: Butanediol di-stearate, Mater. Lett. 61 (2007) 1526-1528.

DOI: 10.1016/j.matlet.2006.07.072

Google Scholar

[5] C.Z. Chen, L.G. Wang, Y. Huang, Crosslinking of the electrospun polyethylene glycol/cellulose acetate composite fibers as shape-stabilized phase change materials, Mater. Lett. 63 (2009) 569-571.

DOI: 10.1016/j.matlet.2008.11.033

Google Scholar

[6] E.B.S. Mettawee, G.M.R. Assassa, Experimental study of a compact PCM solar collector, Energy 31 (2006) 2958-2968.

DOI: 10.1016/j.energy.2005.11.019

Google Scholar

[7] F.L. Tan, C.P. Tso, Cooling of mobile electronic devices using phase change materials, Appl. Therm. Eng. 24 (2004) 159-169.

DOI: 10.1016/j.applthermaleng.2003.09.005

Google Scholar

[8] A. de Gracia, L. Rincón, A. Castell, M. Jiménez, D. Boer, M. Medrano, L.F. Cabeza, Life Cycle Assessment of the inclusion of phase change materials (PCM) in experimental buildings, Energ. Buildings 42 (2010) 1517-1523.

DOI: 10.1016/j.enbuild.2010.03.022

Google Scholar

[9] V.V. Tyagi, D. Buddhi, PCM thermal storage in buildings: A state of art, Renew. Sust. Energ. Rev. 11 (2007) 1146-1166.

DOI: 10.1016/j.rser.2005.10.002

Google Scholar

[10] T. Nomura, N. Okinaka, T. Akiyama, Waste heat transportation system, using phase change material (PCM) from steelworks to chemical plant, Resour. Conserv. Recy. 54 (2010) 1000-1006.

DOI: 10.1016/j.resconrec.2010.02.007

Google Scholar

[11] S. Mondal, Phase change materials for smart textiles-An overview, Appl. Therm. Eng. 28 (2008) 1536-1550.

Google Scholar

[12] C.Z. Chen, L.G. Wang, Y. Huang, Ultrafine electrospun fibers based on stearyl stearate/polyethylene terephthalate composite as form stable phase change materials, Chem. Eng. J. 150 (2009) 269-274.

DOI: 10.1016/j.cej.2009.03.007

Google Scholar

[13] C.Z. Chen, L.G. Wang, Y. Huang, A novel shape-stabilized PCM: Electrospun ultrafine fibers based on lauric acid/polyethylene terephthalate composite, Mater. Lett. 62 (2008) 3515-3517.

DOI: 10.1016/j.matlet.2008.03.034

Google Scholar

[14] M. Kenisarin, K. Mahkamov, Solar energy storage using phase change materials, Renew. Sust. Energ. Rev. 11 (2007) 1913-(1965).

DOI: 10.1016/j.rser.2006.05.005

Google Scholar

[15] A. Sari, A. Karaipekli, Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage, Sol. Energy Mater. Sol. Cell. 93 (2009) 571-576.

DOI: 10.1016/j.solmat.2008.11.057

Google Scholar

[16] A. Karaipekli, A. Sarı, Capric-myristic acid/vermiculite composite as form-stable phase change material for thermal energy storage, Sol. Energy 83 (2009) 323-332.

DOI: 10.1016/j.solener.2008.08.012

Google Scholar

[17] A. Karaipekli, A. Sari, Capric-myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage, Renew. Energ. 33 (2008) 2599-2605.

DOI: 10.1016/j.renene.2008.02.024

Google Scholar

[18] W.L. Wang, X.X. Yang, Y.T. Fang, J. Ding, Preparation and performance of form-stable polyethylene glycol/silicon dioxide composites as solid-liquid phase change materials, Appl. Energ. 86 (2009) 170-174.

DOI: 10.1016/j.apenergy.2007.12.003

Google Scholar

[19] G.Y. Fang, H. Li, X. Liu, Preparation and properties of lauric acid/silicon dioxide composites as form-stable phase change materials for thermal energy storage, Mater. Chem. Phys. 122 (2010) 533-536.

DOI: 10.1016/j.matchemphys.2010.03.042

Google Scholar

[20] X.M. Fang, Z.G. Zhang, Z.H. Chen, Study on preparation of montmorillonite-based composite phase change materials and their applications in thermal storage building materials, Energ. Convers. Manage. 49 (2008) 718-723.

DOI: 10.1016/j.enconman.2007.07.031

Google Scholar

[21] X.M. Fang, Z.G. Zhang, A novel montmorillonite-based composite phase change material and its applications in thermal storage building materials, Energ. Buildings 38 (2006) 377-380.

DOI: 10.1016/j.enbuild.2005.07.005

Google Scholar

[22] H.Z. Zhang, X.D. Wang, D.Z. Wu, Silica encapsulation of n-octadecane via sol-gel process: A novel microencapsulated phase-change material with enhanced thermal conductivity and performance, J. Mater. Sci. 343 (2010) 246-255.

DOI: 10.1016/j.jcis.2009.11.036

Google Scholar

[23] H. Li, G.Y. Fang, X. Liu, Synthesis of shape-stabilized paraffin/silicon dioxide composites as phase change material for thermal energy storage, J. Mater. Sci. 45 (2010) 1672-1676.

DOI: 10.1007/s10853-009-4146-8

Google Scholar

[24] H.Y. Zeng, W.M. Huang, J.L. Shi, A covalently bonded AlQ3/SiO2 hybrid material with blue light emission by a conventional sol-gel approach, Chem. Commun. 8 (2006) 880-881.

DOI: 10.1039/b515518e

Google Scholar

[25] L. Viau, C. Tourné-Péteilh, J.M. Devoisselle, A. Vioux, Ionogels as drug delivery system: one-step sol-gel synthesis using imidazolium ibuprofenate ionic liquid, Chem. Commun. 46 (2010) 228-230.

DOI: 10.1039/b913879j

Google Scholar

[26] D.P. Debecker, K. Bouchmella, C. Poleunis, P. Eloy, P. Bertrand, E.M. Gaigneaux, P.H. Mutin, Design of SiO2-Al2O3-MoO3 metathesis catalysts by nonhydrolytic sol-gel, Chem. Mater. 21 (2009) 2817-2824.

DOI: 10.1021/cm900490t

Google Scholar

[27] Y. Lu, Y.D. Yin, B.T. Mayers, Y.N. Xia, Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica, Nano Lett. 2 (2002) 183-186.

DOI: 10.1021/nl025508+

Google Scholar

[28] F. Yu, Z.H. Chen, X.R. Zeng, Preparation, characterization, and thermal properties of microPCMs containing n-dodecanol by using different types of styrene-maleic anhydride as emulsifier, Colloid. Polym. Sci. 287 (2009) 549-560.

DOI: 10.1007/s00396-009-2001-8

Google Scholar

[29] X.B. Yu, M.H. Wang, H.X. Li, Study on the nitrobenzene hydrogenation over a Pd-B/SiO2 amorphous catalyst, Appl. Catal., A 202 (2000) 7-22.

DOI: 10.1016/s0926-860x(00)00454-3

Google Scholar

[30] U. Doma´nska, P. Morawski, R. Wierzbicki, Phase diagrams of binary systems containing n-alkanes, or cyclohexane, or 1-alkanols and 2, 3-pentanedione at atmospheric and high pressure, Fluid Phase Equilib. 242 (2006) 154-163.

DOI: 10.1016/j.fluid.2006.02.001

Google Scholar