[1]
A. Castell, C. Sole, M. Medrano, J. Roca, L.F. Cabeza, D. Garc, Natural convection heat transfer coefficients in phase change material (PCM) modules with external vertical fins, Appl. Therm. Eng. 28 (2008) 1676-1686.
DOI: 10.1016/j.applthermaleng.2007.11.004
Google Scholar
[2]
M.M. Farid, A.M. Khudhair, S.A.K. Razack, S.A. Hallaj, A review on phase change energy storage: materials and applications, Energ. Convers. Manage. 45 (2004) 1597-1615.
DOI: 10.1016/j.enconman.2003.09.015
Google Scholar
[3]
A. Sarı, A. Biçer, A. Karaipekli, Synthesis, characterization, thermal properties of a series of stearic acid esters as novel solid-liquid phase change materials, Mater. Lett. 63 (2009) 1213-1216.
DOI: 10.1016/j.matlet.2009.02.045
Google Scholar
[4]
W.D. Li, E.Y. Ding, Preparation and characterization of a novel solid-liquid PCM: Butanediol di-stearate, Mater. Lett. 61 (2007) 1526-1528.
DOI: 10.1016/j.matlet.2006.07.072
Google Scholar
[5]
C.Z. Chen, L.G. Wang, Y. Huang, Crosslinking of the electrospun polyethylene glycol/cellulose acetate composite fibers as shape-stabilized phase change materials, Mater. Lett. 63 (2009) 569-571.
DOI: 10.1016/j.matlet.2008.11.033
Google Scholar
[6]
E.B.S. Mettawee, G.M.R. Assassa, Experimental study of a compact PCM solar collector, Energy 31 (2006) 2958-2968.
DOI: 10.1016/j.energy.2005.11.019
Google Scholar
[7]
F.L. Tan, C.P. Tso, Cooling of mobile electronic devices using phase change materials, Appl. Therm. Eng. 24 (2004) 159-169.
DOI: 10.1016/j.applthermaleng.2003.09.005
Google Scholar
[8]
A. de Gracia, L. Rincón, A. Castell, M. Jiménez, D. Boer, M. Medrano, L.F. Cabeza, Life Cycle Assessment of the inclusion of phase change materials (PCM) in experimental buildings, Energ. Buildings 42 (2010) 1517-1523.
DOI: 10.1016/j.enbuild.2010.03.022
Google Scholar
[9]
V.V. Tyagi, D. Buddhi, PCM thermal storage in buildings: A state of art, Renew. Sust. Energ. Rev. 11 (2007) 1146-1166.
DOI: 10.1016/j.rser.2005.10.002
Google Scholar
[10]
T. Nomura, N. Okinaka, T. Akiyama, Waste heat transportation system, using phase change material (PCM) from steelworks to chemical plant, Resour. Conserv. Recy. 54 (2010) 1000-1006.
DOI: 10.1016/j.resconrec.2010.02.007
Google Scholar
[11]
S. Mondal, Phase change materials for smart textiles-An overview, Appl. Therm. Eng. 28 (2008) 1536-1550.
Google Scholar
[12]
C.Z. Chen, L.G. Wang, Y. Huang, Ultrafine electrospun fibers based on stearyl stearate/polyethylene terephthalate composite as form stable phase change materials, Chem. Eng. J. 150 (2009) 269-274.
DOI: 10.1016/j.cej.2009.03.007
Google Scholar
[13]
C.Z. Chen, L.G. Wang, Y. Huang, A novel shape-stabilized PCM: Electrospun ultrafine fibers based on lauric acid/polyethylene terephthalate composite, Mater. Lett. 62 (2008) 3515-3517.
DOI: 10.1016/j.matlet.2008.03.034
Google Scholar
[14]
M. Kenisarin, K. Mahkamov, Solar energy storage using phase change materials, Renew. Sust. Energ. Rev. 11 (2007) 1913-(1965).
DOI: 10.1016/j.rser.2006.05.005
Google Scholar
[15]
A. Sari, A. Karaipekli, Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage, Sol. Energy Mater. Sol. Cell. 93 (2009) 571-576.
DOI: 10.1016/j.solmat.2008.11.057
Google Scholar
[16]
A. Karaipekli, A. Sarı, Capric-myristic acid/vermiculite composite as form-stable phase change material for thermal energy storage, Sol. Energy 83 (2009) 323-332.
DOI: 10.1016/j.solener.2008.08.012
Google Scholar
[17]
A. Karaipekli, A. Sari, Capric-myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage, Renew. Energ. 33 (2008) 2599-2605.
DOI: 10.1016/j.renene.2008.02.024
Google Scholar
[18]
W.L. Wang, X.X. Yang, Y.T. Fang, J. Ding, Preparation and performance of form-stable polyethylene glycol/silicon dioxide composites as solid-liquid phase change materials, Appl. Energ. 86 (2009) 170-174.
DOI: 10.1016/j.apenergy.2007.12.003
Google Scholar
[19]
G.Y. Fang, H. Li, X. Liu, Preparation and properties of lauric acid/silicon dioxide composites as form-stable phase change materials for thermal energy storage, Mater. Chem. Phys. 122 (2010) 533-536.
DOI: 10.1016/j.matchemphys.2010.03.042
Google Scholar
[20]
X.M. Fang, Z.G. Zhang, Z.H. Chen, Study on preparation of montmorillonite-based composite phase change materials and their applications in thermal storage building materials, Energ. Convers. Manage. 49 (2008) 718-723.
DOI: 10.1016/j.enconman.2007.07.031
Google Scholar
[21]
X.M. Fang, Z.G. Zhang, A novel montmorillonite-based composite phase change material and its applications in thermal storage building materials, Energ. Buildings 38 (2006) 377-380.
DOI: 10.1016/j.enbuild.2005.07.005
Google Scholar
[22]
H.Z. Zhang, X.D. Wang, D.Z. Wu, Silica encapsulation of n-octadecane via sol-gel process: A novel microencapsulated phase-change material with enhanced thermal conductivity and performance, J. Mater. Sci. 343 (2010) 246-255.
DOI: 10.1016/j.jcis.2009.11.036
Google Scholar
[23]
H. Li, G.Y. Fang, X. Liu, Synthesis of shape-stabilized paraffin/silicon dioxide composites as phase change material for thermal energy storage, J. Mater. Sci. 45 (2010) 1672-1676.
DOI: 10.1007/s10853-009-4146-8
Google Scholar
[24]
H.Y. Zeng, W.M. Huang, J.L. Shi, A covalently bonded AlQ3/SiO2 hybrid material with blue light emission by a conventional sol-gel approach, Chem. Commun. 8 (2006) 880-881.
DOI: 10.1039/b515518e
Google Scholar
[25]
L. Viau, C. Tourné-Péteilh, J.M. Devoisselle, A. Vioux, Ionogels as drug delivery system: one-step sol-gel synthesis using imidazolium ibuprofenate ionic liquid, Chem. Commun. 46 (2010) 228-230.
DOI: 10.1039/b913879j
Google Scholar
[26]
D.P. Debecker, K. Bouchmella, C. Poleunis, P. Eloy, P. Bertrand, E.M. Gaigneaux, P.H. Mutin, Design of SiO2-Al2O3-MoO3 metathesis catalysts by nonhydrolytic sol-gel, Chem. Mater. 21 (2009) 2817-2824.
DOI: 10.1021/cm900490t
Google Scholar
[27]
Y. Lu, Y.D. Yin, B.T. Mayers, Y.N. Xia, Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica, Nano Lett. 2 (2002) 183-186.
DOI: 10.1021/nl025508+
Google Scholar
[28]
F. Yu, Z.H. Chen, X.R. Zeng, Preparation, characterization, and thermal properties of microPCMs containing n-dodecanol by using different types of styrene-maleic anhydride as emulsifier, Colloid. Polym. Sci. 287 (2009) 549-560.
DOI: 10.1007/s00396-009-2001-8
Google Scholar
[29]
X.B. Yu, M.H. Wang, H.X. Li, Study on the nitrobenzene hydrogenation over a Pd-B/SiO2 amorphous catalyst, Appl. Catal., A 202 (2000) 7-22.
DOI: 10.1016/s0926-860x(00)00454-3
Google Scholar
[30]
U. Doma´nska, P. Morawski, R. Wierzbicki, Phase diagrams of binary systems containing n-alkanes, or cyclohexane, or 1-alkanols and 2, 3-pentanedione at atmospheric and high pressure, Fluid Phase Equilib. 242 (2006) 154-163.
DOI: 10.1016/j.fluid.2006.02.001
Google Scholar