[1]
F. C. McMichael, E. D. Maruhnich, W. R. Samples, Recycle water quality from a blast furnace. Water, Pollution Control Federation , 43 (4), (1971) 595-603.
Google Scholar
[2]
I. Z. Yildirim, M. Prezzi, Chemical, mineralogical, and morphological properties of steel slag. Adv. Civil Eng. 13, (2011) 13.
DOI: 10.1155/2011/463638
Google Scholar
[3]
1. Schoenberger, Best available techniques reference document on the production of iron and steel. Publications of EC: European Commission, Joint Research Centre, IPTS, European IPPC Bureau. (2001).
Google Scholar
[4]
D. Brandt, J. C. Warner, Metallurgy Fundamentals (3rd ed. ). Goodheart-Willcox, Tinley Park, Ill, USA, (2005).
Google Scholar
[5]
E. M. (EMT), Iron and steel process, (July 2008). http: /www. energymanagertraining. com . (Accessed 14 March 2012).
Google Scholar
[6]
A. I. (AISI), How Steel is Made. Retrieved from http: /www. steel. org, (2011). (Accessed 14 March 2012).
Google Scholar
[7]
S. Seetharaman, Fundamentals of Metallurgy. Boca Raton, Fla, USA: Woodhead Publishing and CRC Press, (2005).
Google Scholar
[8]
G. S, Kumar, D. Basu, Y. -T. Hung, L. K. Wang, Handbook of Advanced Industrial and Hazardous Wastes Treatment. CRC Press, (2009).
Google Scholar
[9]
G. P. Water, Water and Process Technologies (2011). Retrieved from www. gewater. com. (Accessed 18 March 2012).
Google Scholar
[10]
F. Piero, Characterization of industrial wastewaters. New Jersey Institute of Technology, (2011).
Google Scholar
[11]
S. Lisnunt, G. L. Saengkiettiyut, Effects of sodium phosphate and sodium sulphate on corrosion resistance of AISA of 316 Stainless Steel in 3. 5wt% sodium chloride solution. J. Metals, Matls Min. , 14 (2004) 33-38.
Google Scholar
[12]
C. -H. Hsu, F. Mansfeld, T. Wood, Inhibiting mild steel corrosion from sulfate-reducing bacteria using antimicrobial-producing biofilms in three-mileIsland process water. Application Microbiol Biotechnol. 64(2), (2004). 275-283.
DOI: 10.1007/s00253-003-1403-7
Google Scholar
[13]
P. A. Terry, Application of ozone and oxygen to reduce chemical oxygen demand and hydrogen sulfide from a recovered paper processing plant. Inter. J. Chem. Eng. 51 (2010) 6.
DOI: 10.1155/2010/250235
Google Scholar
[14]
P. Vallejo, A. Izquierdo-reina, M. D. Castro, Flow injection determination of chemical oxygen demand in leaching liquid, Analyst. 124(8) (1999), 1261-1264.
DOI: 10.1039/a902443c
Google Scholar
[15]
I. D. Resources, Water quality standards review. Chloride, Sulfate and Total Dissolved Solids , (2009, February 9) 1-79.
Google Scholar
[16]
N. B. Chang, F. Hossain, M. Wanielista, Filter media for nutrient removal in natural systems and built environments: 1- Prevoius trend and perspectives. Environ. Eng. Sci., 27 (9), (2010) 1-18.
DOI: 10.1089/ees.2009.0415
Google Scholar
[17]
E. Canada, Environmental Code of Practice for Integrated Steel Mills. (March 2001) CEPA 1999 code of Practice.
Google Scholar
[18]
D. Nicol, M. Shaw, D. Ledward, Hydrogen sulfide production by bacteria and sulfmyolobin formation in pre-packed chilled beef, Appld. Microbiology 19 (1970) 937-939.
DOI: 10.1128/am.19.6.937-939.1970
Google Scholar
[19]
G. Moussavi, K. Naddaf, A. Mesdaghinia, A. Deshusses, The removal of H2S from process air by diffusion into activated sludge. Environ. Technol. 28, (2007). 987-993.
DOI: 10.1080/09593332808618856
Google Scholar
[20]
M. A. Awan, Agricultural and food chemistry, institute of environmental science and engineering (IESE), National University of Sciences and Technology (NUST). Electric Journal of Environmental, (2004) 625-628.
Google Scholar