A Mesh Deformation Method with Multiple Editing Granularities

Article Preview

Abstract:

This paper proposes a mesh deformation method being able to quickly exchange between different editing granularities. The method firstly simplifies the original model mesh to obtain an accuracy-specified control mesh while preserving user’s pre-configured control handle vertices, and then computes the original mesh vertices’ mean value coordinates on the control mesh. Next, uses the Laplacian deformation to deform the control mesh with user’s editing, and then computes the deforming result based on the new control mesh and the previous mean value coordinates. Users can quickly generate a different accuracy control mesh of the new mesh again for deforming with a different granularity. Users only need edit some control vertices, which contains user’s specified handles, so the manipulation is convenient. Experiments show that users can deform models with this method, while changing the granularity fluently and preserving mesh’s features.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1822-1829

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Zhou, S.-J. Liu, X.-G. Jin, J.-Q. Feng, and X.-F. Ye, Geodesic-Based Constrained Deformations for Polygonal Mesh Models. Journal of Software, 2007, 18(6): pp.1543-1552.

DOI: 10.1360/jos181543

Google Scholar

[2] T. Ju, S. Schaefer, and J. Warren. Mean value coordinates for closed triangular meshes. in ACM SIGGRAPH 2005 Papers. Los Angeles, California: ACM. 2005, 561-566.

DOI: 10.1145/1186822.1073229

Google Scholar

[3] P. Joshi, M. Meyer, T. DeRose, B. Green, and T. Sanocki. Harmonic coordinates for character articulation. in ACM SIGGRAPH 2007 papers. San Diego, California: ACM. 2007, 71.

DOI: 10.1145/1275808.1276466

Google Scholar

[4] Y. Lipman, D. Levin, and D. Cohen-Or. Green Coordinates. in ACM SIGGRAPH 2008 papers. Los Angeles, California: ACM. 2008, 1-10.

DOI: 10.1145/1399504.1360677

Google Scholar

[5] M. Alexa, Differential coordinates for local mesh morphing and deformation. The Visual Computer, 2003, 9(2): pp.105-114.

DOI: 10.1007/s00371-002-0180-0

Google Scholar

[6] D. Cohen-Or, Space deformations, surface deformations and the opportunities in-between. Journal of Computer Science and Technology, 2009, 24(1): pp.2-5.

Google Scholar

[7] A. H. Barr. Global and local deformations of solid primitives. in Proceedings of the 11th annual conference on Computer graphics and interactive techniques: ACM. 1984, 21-30.

DOI: 10.1145/800031.808573

Google Scholar

[8] T. W. Sederberg and S. R. Parry. Free-form deformation of solid geometric models. in The 13th annual conference on Computer graphics and interactive techniques: ACM. 1986, 151-160.

DOI: 10.1145/15922.15903

Google Scholar

[9] M. S. Floater, Mean value coordinates. Computer Aided Geometric Design, 2003, 20(1): pp.19-27.

DOI: 10.1016/s0167-8396(03)00002-5

Google Scholar

[10] Z. Deng, X. Luo, and X. Miao, Automatic Cage Building with Quadric Error Metrics. Journal of Computer Science and Technology, 2011, 26(3): pp.538-547.

DOI: 10.1007/s11390-011-1153-4

Google Scholar

[11] Y. Lipman, J. Kopf, D. Cohen-Or, and D. Levin. GPU-assisted positive mean value coordinates for mesh deformations. in Proceedings of the fifth Eurographics symposium on Geometry processing. Barcelona, Spain: Eurographics Association. 2007, 117-123.

Google Scholar

[12] C. Xian, H. Lin, and S. Gao. Automatic Generation of Coarse Bounding Cages from Dense Meshes. in IEEE International Conference on Shape Modeling and Applications (SMI). Tsinghua university. 2009, 21-27.

DOI: 10.1109/smi.2009.5170159

Google Scholar

[13] J. Feng, J. Shao, X. Jin, Q. Peng, and A. R. Forrest, Multiresolution free-form deformation with subdivision surface of arbitrary topology. The Visual Computer, 2006, 22(1): pp.28-42.

DOI: 10.1007/s00371-005-0351-x

Google Scholar

[14] K. Hormann, Barycentric coordinates for arbitrary polygons in the plane. 2004, Institute of Computer Science, Clausthal University of Technology.

Google Scholar

[15] Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, C. Rössl, and H.-P. Seidel. Differential Coordinates for Interactive Mesh Editing. in Proceedings of the Shape Modeling International 2004: IEEE Computer Society. 2004, 181-190.

DOI: 10.1109/smi.2004.1314505

Google Scholar

[16] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-P. Seidel. Laplacian surface editing. in Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing. Nice, France: ACM. 2004, 175-184.

DOI: 10.1145/1057432.1057456

Google Scholar

[17] K. Zhou, J. Huang, J. Snyder, X. Liu, H. Bao, B. Guo, and H.-Y. Shum. Large mesh deformation using the volumetric graph Laplacian. in ACM SIGGRAPH 2005 Papers. Los Angeles, California: ACM. 2005, 496-503.

DOI: 10.1145/1186822.1073219

Google Scholar

[18] Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-Y. Shum. Mesh editing with poisson-based gradient field manipulation. in ACM SIGGRAPH 2004 Papers. Los Angeles, California: ACM. 2004, 644-651.

DOI: 10.1145/1186562.1015774

Google Scholar

[19] R. W. Sumner, J. Schmid, and M. Pauly. Embedded deformation for shape manipulation. in ACM SIGGRAPH 2007 papers. San Diego, California: ACM. 2007, 80.

DOI: 10.1145/1275808.1276478

Google Scholar

[20] K. Xu, Y. Wang, Y. Xiong, and Z.-Q. Cheng. Interactive Shape Manipulation Based on Space Deformation with Harmonic-Guided Clustering. in Computer Animation and Social Agents. Seoul, Korea. 2008.

Google Scholar

[21] M. Garland and P. S. Heckbert. Surface simplification using quadric error metrics. in Proceedings of the 24th annual conference on Computer graphics and interactive techniques: ACM Press/Addison-Wesley Publishing Co. 1997, 209-216.

DOI: 10.1145/258734.258849

Google Scholar

[22] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen, Decimation of triangle meshes. ACM SIGGRAPH Computer Graphics, 1992, 26(2): pp.65-70.

DOI: 10.1145/142920.134010

Google Scholar

[23] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Mesh optimization. in SIGGRAPH'93 Proceedings of the 20th annual conference on Computer graphics and interactive techniques. Anaheim, CA: ACM. 1993, 19-26.

DOI: 10.1145/166117.166119

Google Scholar

[24] Z. Li, D. Levin, Z. Deng, D. Liu, and X. Luo, Cage-free local deformations using green coordinates. The Visual Computer, 2010, 26(6): pp.1027-1036.

DOI: 10.1007/s00371-010-0438-x

Google Scholar