[1]
Y. Zhou, S.-J. Liu, X.-G. Jin, J.-Q. Feng, and X.-F. Ye, Geodesic-Based Constrained Deformations for Polygonal Mesh Models. Journal of Software, 2007, 18(6): pp.1543-1552.
DOI: 10.1360/jos181543
Google Scholar
[2]
T. Ju, S. Schaefer, and J. Warren. Mean value coordinates for closed triangular meshes. in ACM SIGGRAPH 2005 Papers. Los Angeles, California: ACM. 2005, 561-566.
DOI: 10.1145/1186822.1073229
Google Scholar
[3]
P. Joshi, M. Meyer, T. DeRose, B. Green, and T. Sanocki. Harmonic coordinates for character articulation. in ACM SIGGRAPH 2007 papers. San Diego, California: ACM. 2007, 71.
DOI: 10.1145/1275808.1276466
Google Scholar
[4]
Y. Lipman, D. Levin, and D. Cohen-Or. Green Coordinates. in ACM SIGGRAPH 2008 papers. Los Angeles, California: ACM. 2008, 1-10.
DOI: 10.1145/1399504.1360677
Google Scholar
[5]
M. Alexa, Differential coordinates for local mesh morphing and deformation. The Visual Computer, 2003, 9(2): pp.105-114.
DOI: 10.1007/s00371-002-0180-0
Google Scholar
[6]
D. Cohen-Or, Space deformations, surface deformations and the opportunities in-between. Journal of Computer Science and Technology, 2009, 24(1): pp.2-5.
Google Scholar
[7]
A. H. Barr. Global and local deformations of solid primitives. in Proceedings of the 11th annual conference on Computer graphics and interactive techniques: ACM. 1984, 21-30.
DOI: 10.1145/800031.808573
Google Scholar
[8]
T. W. Sederberg and S. R. Parry. Free-form deformation of solid geometric models. in The 13th annual conference on Computer graphics and interactive techniques: ACM. 1986, 151-160.
DOI: 10.1145/15922.15903
Google Scholar
[9]
M. S. Floater, Mean value coordinates. Computer Aided Geometric Design, 2003, 20(1): pp.19-27.
DOI: 10.1016/s0167-8396(03)00002-5
Google Scholar
[10]
Z. Deng, X. Luo, and X. Miao, Automatic Cage Building with Quadric Error Metrics. Journal of Computer Science and Technology, 2011, 26(3): pp.538-547.
DOI: 10.1007/s11390-011-1153-4
Google Scholar
[11]
Y. Lipman, J. Kopf, D. Cohen-Or, and D. Levin. GPU-assisted positive mean value coordinates for mesh deformations. in Proceedings of the fifth Eurographics symposium on Geometry processing. Barcelona, Spain: Eurographics Association. 2007, 117-123.
Google Scholar
[12]
C. Xian, H. Lin, and S. Gao. Automatic Generation of Coarse Bounding Cages from Dense Meshes. in IEEE International Conference on Shape Modeling and Applications (SMI). Tsinghua university. 2009, 21-27.
DOI: 10.1109/smi.2009.5170159
Google Scholar
[13]
J. Feng, J. Shao, X. Jin, Q. Peng, and A. R. Forrest, Multiresolution free-form deformation with subdivision surface of arbitrary topology. The Visual Computer, 2006, 22(1): pp.28-42.
DOI: 10.1007/s00371-005-0351-x
Google Scholar
[14]
K. Hormann, Barycentric coordinates for arbitrary polygons in the plane. 2004, Institute of Computer Science, Clausthal University of Technology.
Google Scholar
[15]
Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, C. Rössl, and H.-P. Seidel. Differential Coordinates for Interactive Mesh Editing. in Proceedings of the Shape Modeling International 2004: IEEE Computer Society. 2004, 181-190.
DOI: 10.1109/smi.2004.1314505
Google Scholar
[16]
O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-P. Seidel. Laplacian surface editing. in Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing. Nice, France: ACM. 2004, 175-184.
DOI: 10.1145/1057432.1057456
Google Scholar
[17]
K. Zhou, J. Huang, J. Snyder, X. Liu, H. Bao, B. Guo, and H.-Y. Shum. Large mesh deformation using the volumetric graph Laplacian. in ACM SIGGRAPH 2005 Papers. Los Angeles, California: ACM. 2005, 496-503.
DOI: 10.1145/1186822.1073219
Google Scholar
[18]
Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-Y. Shum. Mesh editing with poisson-based gradient field manipulation. in ACM SIGGRAPH 2004 Papers. Los Angeles, California: ACM. 2004, 644-651.
DOI: 10.1145/1186562.1015774
Google Scholar
[19]
R. W. Sumner, J. Schmid, and M. Pauly. Embedded deformation for shape manipulation. in ACM SIGGRAPH 2007 papers. San Diego, California: ACM. 2007, 80.
DOI: 10.1145/1275808.1276478
Google Scholar
[20]
K. Xu, Y. Wang, Y. Xiong, and Z.-Q. Cheng. Interactive Shape Manipulation Based on Space Deformation with Harmonic-Guided Clustering. in Computer Animation and Social Agents. Seoul, Korea. 2008.
Google Scholar
[21]
M. Garland and P. S. Heckbert. Surface simplification using quadric error metrics. in Proceedings of the 24th annual conference on Computer graphics and interactive techniques: ACM Press/Addison-Wesley Publishing Co. 1997, 209-216.
DOI: 10.1145/258734.258849
Google Scholar
[22]
W. J. Schroeder, J. A. Zarge, and W. E. Lorensen, Decimation of triangle meshes. ACM SIGGRAPH Computer Graphics, 1992, 26(2): pp.65-70.
DOI: 10.1145/142920.134010
Google Scholar
[23]
H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Mesh optimization. in SIGGRAPH'93 Proceedings of the 20th annual conference on Computer graphics and interactive techniques. Anaheim, CA: ACM. 1993, 19-26.
DOI: 10.1145/166117.166119
Google Scholar
[24]
Z. Li, D. Levin, Z. Deng, D. Liu, and X. Luo, Cage-free local deformations using green coordinates. The Visual Computer, 2010, 26(6): pp.1027-1036.
DOI: 10.1007/s00371-010-0438-x
Google Scholar