Numerical Simulation and Optimization of 3µm Emission in Er: YLF Crystals by Means of Simulated Annealing Technique

Article Preview

Abstract:

In this work a multi-objective Simulated Annealing algorithm (SA) is applied to maximize the small signal gain (SSG) of Er3+-3µm: YLF crystal, which plays important role in the laser systems development (and further operation). For this purpose the rate equations Er:YLF crystal were solved numerically and 3 microns SSG for different Er3+ concentrations was maximized by Simulated annealing (SA) technique taken into account the pulse time (time-ON), time-OFF and the pumping rate (Rp) parameters. Results show that is possible to obtain valid laser gain for erbium concentration smaller than 9 mol % for the Er:YLF system after appropriate set of these parameters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2217-2220

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Frauchiger, W. Lüthy. Interaction of 3 µm radiation with matter. Optical and Quantum Electronics, v. 19, pp.231-236, 1987.

DOI: 10.1007/bf02032517

Google Scholar

[2] L. Gomes, A. F. H. Librantz,  F. H. Jagosich, W. A. L. Alves, I. M. Ranieri, S. L. Baldochi. Energy transfer rates and population inversion of 4I11/2 excited state of Er3+ investigated by means of numerical solutions of the rate equations system in Er:LiYF4 crystal. Journal of Applied Physics 106, 103508, 2009.

DOI: 10.1063/1.3259388

Google Scholar

[3] O. A. Louchev, Y. Urata, S. Wada. Numerical simulation and optimization of Q-switched 2 μm Tm,Ho:YLF laser. Optics Express, v. 15, pp.3940-3947, 2007.

DOI: 10.1364/oe.15.003940

Google Scholar

[4] N.U. WETTER, A.M. DEANA, I.M. RANIERI, L. GOMES, S.L. BALDOCHI. Influence of Excited-State-Energy Upconversion on Pulse Shape in Quasi-Continuous-Wave Diode-Pumped Er:LiYF4 Lasers. Quantum Electronics, IEEE Journal of, v.46, no.1, pp.99-104, 2010.

DOI: 10.1109/jqe.2009.2028305

Google Scholar

[5] N.U. Wetter, A.M. Deana, I.M. Ranieri, L. Gomes, S.L. Baldochi. Influence of Excited-State-Energy Upconversion on Pulse Shape in Quasi-Continuous-Wave Diode-Pumped Er:LiYF4 Lasers. Quantum Electronics, IEEE Journal of, v.46, no.1, pp.99-104, 2010.

DOI: 10.1109/jqe.2009.2028305

Google Scholar

[6] A. M. Deana, N. U. Wetter. 1.75W 3ms Pulsed Er:YLF Laser Diode End and Side-Pumped MOPA. Annals of Optics of the XXX ENFMC, p.173–176, 2007.

Google Scholar

[7] A.Y. Dergachev, J.H. Flint, P.F. Moulton. 1.8-W CW Er:YLF diode-pumped laser. CLEO, p.564, 2000.

Google Scholar

[8] M. Pollnau, T. Graf, J. E. Balmer, W. Lüthy, H. P. Weber. Explanation of the cw operation of the Er3+ 3-µm crystal laser. Physical Review A: Atomic, molecular, and optical physics, 49 (5). pp.3990-3996. ISSN 1050-2947, 1994.

DOI: 10.1103/physreva.49.3990

Google Scholar

[9] Q. Sun, H. Liu, N. Huang, H. Long, J. Wen, S. Zhu, W. Zhao. Influence of the time modulation of the pump laser caused by mode beating on optical parametric process. Optical Society of America, v. 18, Issue 3, pp.3101-3108, 2010.

DOI: 10.1364/oe.18.003101

Google Scholar

[10] C. Li, Y. Guyot, C. Linarés, R. Moncorgé, M. F. Joubert. Radiative Transition Probabilities of Trivalent Rare-Earth Ions in LiYF4. OSA Proceedings Series. Advanced Solid State Lasers 15, 91, 1993.

DOI: 10.1364/assl.1993.nl7

Google Scholar

[11] S. Kirkpatrick, C. D. Gelatti, M. P. Vecchi. Optimization by Simulated Annealing. Science, vol. 220, n. 4598, pp.671-680, 1983.

DOI: 10.1126/science.220.4598.671

Google Scholar

[12] M. A. C. Benvenga, S. A. Araújo, A. F. H. Librantz, J. C. C. Santana, E. B. Tambourgi. Application of simulated annealing in Simulation and Optimization of Drying Process of Zea mays Malt. Eng . Agríc., Jaboticabal, v.31, n.5, pp.940-953, 2011.

DOI: 10.1590/s0100-69162011000500012

Google Scholar

[13] H. Tomizawa. Advanced Metaheuristic Algorithms for laser optimization. Synchroton radiation in Natural Science, Vol. 9. No-1-2,pp.24-27, 2010.

Google Scholar

[14] S. Yang, J. Srinivas, S. Mohan, D. Lee and S. Balaji. Optimization of Electric Discharge machining using Simulated Annealing, Journal of Material Processing Technology, v. 209, pp.4471-4475, 2009.

DOI: 10.1016/j.jmatprotec.2008.10.053

Google Scholar

[15] E. Triki, Y. Collette and P. Siarry. A theoretical study on the behavior of simulated annealing leading to a new cooling schedule. European Journal of Operational Research, v. 166, p.77–92, 2005.

DOI: 10.1016/j.ejor.2004.03.035

Google Scholar

[16] Е. Aarts, J. Korst, P. van Laarhoven. Simulated Annealing, in Aarts E., J. Lenstra, eds., Local Search in Combinatorial Optimization, John Wiley and Sons, 1997.

DOI: 10.2307/j.ctv346t9c.9

Google Scholar