[1]
J. Frauchiger, W. Lüthy. Interaction of 3 µm radiation with matter. Optical and Quantum Electronics, v. 19, pp.231-236, 1987.
DOI: 10.1007/bf02032517
Google Scholar
[2]
L. Gomes, A. F. H. Librantz, F. H. Jagosich, W. A. L. Alves, I. M. Ranieri, S. L. Baldochi. Energy transfer rates and population inversion of 4I11/2 excited state of Er3+ investigated by means of numerical solutions of the rate equations system in Er:LiYF4 crystal. Journal of Applied Physics 106, 103508, 2009.
DOI: 10.1063/1.3259388
Google Scholar
[3]
O. A. Louchev, Y. Urata, S. Wada. Numerical simulation and optimization of Q-switched 2 μm Tm,Ho:YLF laser. Optics Express, v. 15, pp.3940-3947, 2007.
DOI: 10.1364/oe.15.003940
Google Scholar
[4]
N.U. WETTER, A.M. DEANA, I.M. RANIERI, L. GOMES, S.L. BALDOCHI. Influence of Excited-State-Energy Upconversion on Pulse Shape in Quasi-Continuous-Wave Diode-Pumped Er:LiYF4 Lasers. Quantum Electronics, IEEE Journal of, v.46, no.1, pp.99-104, 2010.
DOI: 10.1109/jqe.2009.2028305
Google Scholar
[5]
N.U. Wetter, A.M. Deana, I.M. Ranieri, L. Gomes, S.L. Baldochi. Influence of Excited-State-Energy Upconversion on Pulse Shape in Quasi-Continuous-Wave Diode-Pumped Er:LiYF4 Lasers. Quantum Electronics, IEEE Journal of, v.46, no.1, pp.99-104, 2010.
DOI: 10.1109/jqe.2009.2028305
Google Scholar
[6]
A. M. Deana, N. U. Wetter. 1.75W 3ms Pulsed Er:YLF Laser Diode End and Side-Pumped MOPA. Annals of Optics of the XXX ENFMC, p.173–176, 2007.
Google Scholar
[7]
A.Y. Dergachev, J.H. Flint, P.F. Moulton. 1.8-W CW Er:YLF diode-pumped laser. CLEO, p.564, 2000.
Google Scholar
[8]
M. Pollnau, T. Graf, J. E. Balmer, W. Lüthy, H. P. Weber. Explanation of the cw operation of the Er3+ 3-µm crystal laser. Physical Review A: Atomic, molecular, and optical physics, 49 (5). pp.3990-3996. ISSN 1050-2947, 1994.
DOI: 10.1103/physreva.49.3990
Google Scholar
[9]
Q. Sun, H. Liu, N. Huang, H. Long, J. Wen, S. Zhu, W. Zhao. Influence of the time modulation of the pump laser caused by mode beating on optical parametric process. Optical Society of America, v. 18, Issue 3, pp.3101-3108, 2010.
DOI: 10.1364/oe.18.003101
Google Scholar
[10]
C. Li, Y. Guyot, C. Linarés, R. Moncorgé, M. F. Joubert. Radiative Transition Probabilities of Trivalent Rare-Earth Ions in LiYF4. OSA Proceedings Series. Advanced Solid State Lasers 15, 91, 1993.
DOI: 10.1364/assl.1993.nl7
Google Scholar
[11]
S. Kirkpatrick, C. D. Gelatti, M. P. Vecchi. Optimization by Simulated Annealing. Science, vol. 220, n. 4598, pp.671-680, 1983.
DOI: 10.1126/science.220.4598.671
Google Scholar
[12]
M. A. C. Benvenga, S. A. Araújo, A. F. H. Librantz, J. C. C. Santana, E. B. Tambourgi. Application of simulated annealing in Simulation and Optimization of Drying Process of Zea mays Malt. Eng . Agríc., Jaboticabal, v.31, n.5, pp.940-953, 2011.
DOI: 10.1590/s0100-69162011000500012
Google Scholar
[13]
H. Tomizawa. Advanced Metaheuristic Algorithms for laser optimization. Synchroton radiation in Natural Science, Vol. 9. No-1-2,pp.24-27, 2010.
Google Scholar
[14]
S. Yang, J. Srinivas, S. Mohan, D. Lee and S. Balaji. Optimization of Electric Discharge machining using Simulated Annealing, Journal of Material Processing Technology, v. 209, pp.4471-4475, 2009.
DOI: 10.1016/j.jmatprotec.2008.10.053
Google Scholar
[15]
E. Triki, Y. Collette and P. Siarry. A theoretical study on the behavior of simulated annealing leading to a new cooling schedule. European Journal of Operational Research, v. 166, p.77–92, 2005.
DOI: 10.1016/j.ejor.2004.03.035
Google Scholar
[16]
Е. Aarts, J. Korst, P. van Laarhoven. Simulated Annealing, in Aarts E., J. Lenstra, eds., Local Search in Combinatorial Optimization, John Wiley and Sons, 1997.
DOI: 10.2307/j.ctv346t9c.9
Google Scholar