Some Results Concerning Cryptographically Significant Permutation Polynomial

Article Preview

Abstract:

The function $x^{2^{n-1}-1}+ax^5 (n$ odd, $a\in\mathbb{F}_{2^n}$) is differentially 4-uniform and is never bijective. Using Hermite’s Criterion, prove some necessary conditions that $x^{2^{n-1}-1}+ax^5+L(x), L(x)$ being a permutation polynomial.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3073-3075

Citation:

Online since:

December 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Nyberg K.: Differentially uniform mappings for cryptography. In: Advances in Cryptography-EUROCRYPT'93. LNCS, vol. 765, pp.55-64. Springer-Verlag, New York (1994).

DOI: 10.1007/3-540-48285-7_6

Google Scholar

[2] Biham E., Shamir A. Defferential cryptanalysis of DES-like cryptosystems. J.Cryptol. 4(1),3-72(1991).

Google Scholar

[3] Berger T.P., Canteaut A., Charpin P., Laigle-Chapuy Y. On almost perfect nonlinear functions over. IEEE Trans. Inform. Theory 52(9), 4160-4170 (2006).

DOI: 10.1109/tit.2006.880036

Google Scholar

[4] Budaghyan L., Carlet C., Pott A. New classes of almost bent and almost perfectnonlinear polynomials. IEEE Trans. on Inform. Theory 52(3), 1141-1152 (2006).

DOI: 10.1109/tit.2005.864481

Google Scholar

[5] Carlet C., Charpin P., Zinoviev V. Codes, bent functions and permutations sutiable for DES-like cryptosystems. Des. Codes Cryptogr. 15(2), 125-156 (1998).

DOI: 10.1023/a:1008344232130

Google Scholar

[6] Chabaud F., Vaudenay S. Links between differential and linear cryptanalysis. In:Advances in Cryptology -EUROCRYPT'94. LNCS, vol. 950, pp.356-365. Springer-Verlag, New York (1995).

DOI: 10.1007/bfb0053450

Google Scholar

[7] Edel Y., Kyureghyan G., PottA. A new APN function which is not equivalent to a power mapping. IEEE Trans. Inform. Theory 52(2), 744-747 (2006).

DOI: 10.1109/tit.2005.862128

Google Scholar

[8] Hou X.D. Affinity of permutations of Discrete Appl. Math. 154(2), 313-325

Google Scholar

[9] Dillon J.F. APN polynomials: An Update. In: proceedings of: The 9th Conference on Finite Fields and Applications FQ9 (to be published), Dublin, Ireland (2009).

Google Scholar

[10] Beth T., Ding C. On almost perfect nonlinear permutations. In: Advances in Cryptology -EUROCRYPT'93. LNCS, Vol. 765, pp.65-76. Springer-Verlag, New York (1994).

DOI: 10.1007/3-540-48285-7_7

Google Scholar

[11] Lachaud G., Wolfmann J. The Weights of the Orthogonals of the Extended Quadratic Binary Goppa Codes. IEEE Trans. Inform. Theory 36(3), 686-692 (1990).

DOI: 10.1109/18.54892

Google Scholar

[12] Bracken, C., Leander, G.. A highly nonlinear differentially 4 uniform power mapping that permutes fields of even degree. Finite Fields and Their Applications 16(4), 231–242 (2010)

DOI: 10.1016/j.ffa.2010.03.001

Google Scholar

[13] Bracken, C., Leander, G. New families of functions with differential uniformity of 4. In: Proceedings of the conference BFCA 2008, Copenhagen (2008).

Google Scholar

[14] Pasalic E., Charpin P. Some results concerning cryptographically significant mappings over . Des. Codes Cryptogr. 57(3), 257-269 (2010).

DOI: 10.1007/s10623-010-9365-0

Google Scholar