[1]
Nyberg K.: Differentially uniform mappings for cryptography. In: Advances in Cryptography-EUROCRYPT'93. LNCS, vol. 765, pp.55-64. Springer-Verlag, New York (1994).
DOI: 10.1007/3-540-48285-7_6
Google Scholar
[2]
Biham E., Shamir A. Defferential cryptanalysis of DES-like cryptosystems. J.Cryptol. 4(1),3-72(1991).
Google Scholar
[3]
Berger T.P., Canteaut A., Charpin P., Laigle-Chapuy Y. On almost perfect nonlinear functions over. IEEE Trans. Inform. Theory 52(9), 4160-4170 (2006).
DOI: 10.1109/tit.2006.880036
Google Scholar
[4]
Budaghyan L., Carlet C., Pott A. New classes of almost bent and almost perfectnonlinear polynomials. IEEE Trans. on Inform. Theory 52(3), 1141-1152 (2006).
DOI: 10.1109/tit.2005.864481
Google Scholar
[5]
Carlet C., Charpin P., Zinoviev V. Codes, bent functions and permutations sutiable for DES-like cryptosystems. Des. Codes Cryptogr. 15(2), 125-156 (1998).
DOI: 10.1023/a:1008344232130
Google Scholar
[6]
Chabaud F., Vaudenay S. Links between differential and linear cryptanalysis. In:Advances in Cryptology -EUROCRYPT'94. LNCS, vol. 950, pp.356-365. Springer-Verlag, New York (1995).
DOI: 10.1007/bfb0053450
Google Scholar
[7]
Edel Y., Kyureghyan G., PottA. A new APN function which is not equivalent to a power mapping. IEEE Trans. Inform. Theory 52(2), 744-747 (2006).
DOI: 10.1109/tit.2005.862128
Google Scholar
[8]
Hou X.D. Affinity of permutations of Discrete Appl. Math. 154(2), 313-325
Google Scholar
[9]
Dillon J.F. APN polynomials: An Update. In: proceedings of: The 9th Conference on Finite Fields and Applications FQ9 (to be published), Dublin, Ireland (2009).
Google Scholar
[10]
Beth T., Ding C. On almost perfect nonlinear permutations. In: Advances in Cryptology -EUROCRYPT'93. LNCS, Vol. 765, pp.65-76. Springer-Verlag, New York (1994).
DOI: 10.1007/3-540-48285-7_7
Google Scholar
[11]
Lachaud G., Wolfmann J. The Weights of the Orthogonals of the Extended Quadratic Binary Goppa Codes. IEEE Trans. Inform. Theory 36(3), 686-692 (1990).
DOI: 10.1109/18.54892
Google Scholar
[12]
Bracken, C., Leander, G.. A highly nonlinear differentially 4 uniform power mapping that permutes fields of even degree. Finite Fields and Their Applications 16(4), 231–242 (2010)
DOI: 10.1016/j.ffa.2010.03.001
Google Scholar
[13]
Bracken, C., Leander, G. New families of functions with differential uniformity of 4. In: Proceedings of the conference BFCA 2008, Copenhagen (2008).
Google Scholar
[14]
Pasalic E., Charpin P. Some results concerning cryptographically significant mappings over . Des. Codes Cryptogr. 57(3), 257-269 (2010).
DOI: 10.1007/s10623-010-9365-0
Google Scholar