[1]
L.A. Zadeh. Fuzzy Sets. Information and Control. 1965, 8, 338-353
Google Scholar
[2]
A.G. Hamilton. Logic for mathematicians. Cambridge University Press. London, (1978)
Google Scholar
[3]
LUO.Z.K, HU.M, CHEN.T.H. The theory and application of multiple–valued logic. Science Press, Beijing.(1992)
Google Scholar
[4]
Liu.X.H, Jiang Y.F. Mechanical Theorem Proving. Science Press, Beijing.(1987)
Google Scholar
[5]
C.Elkan. The paradoxical success of fuzzy logic. IEEE Expert, 1994,9(4):3-8
Google Scholar
[6]
C.Elkan.The paradoxical controversy over fuzzy logic.IEEE Expert,1994,9(4):47-49
Google Scholar
[7]
F.A. Watkins. False controversy: fuzzy and non-fuzzy faux pas. IEEE Expert, 1995,10(4):4-5
Google Scholar
[8]
Liu X.H. Xiao.H. Operator fuzzy logic and fuzzy resolution. In: Proc of 15th ISMVI. Canada, 1985, 68-75
Google Scholar
[9]
Liu.X.H, An.Zh. An improvement of OFL and its resolution deduction. Chinese J. of Computers(in Chinese), 1990,13(12):890-899
Google Scholar
[10]
Cheng.X.Ch, Jiang.Y.F, Liu X.H. Dialectic operator fuzzy logic. Science in china(Series E). 1996, 39(1):1-10
Google Scholar
[11]
Cheng.X.Ch, Liu.X.H, Lu.R.Q. The OFL based on the semantics of evidence. Chinese Science Bulletin(in Chinese). 1995, 40(1): 86-88
Google Scholar
[12]
Liu X.H. Auto-reasoning based resolution deduction. Science Press, Beijing.(1994)
Google Scholar
[13]
WANG.G.J. Non-classical symbolic logic and approximating reasoning. Science Press, Beijing.(2000)
Google Scholar
[14]
McDermott.D, Doyle.J. Non-monotonic Logic I. Artificial Intelligence,1980,13:41-72.
DOI: 10.1016/0004-3702(80)90012-0
Google Scholar
[15]
McCarthy.J. Circumscription-a form of non-monotonic reasoning. Artificial Intelligence, 1980,13: 27-39
DOI: 10.1016/0004-3702(80)90011-9
Google Scholar
[16]
Reiter.R. A Logic for Default Reasoning. Artificial Intelligence, 1980,13: 81-132.
DOI: 10.1016/0004-3702(80)90014-4
Google Scholar