Spectrum and Spatial Invariant Based Remote Sensing Image Classification

Article Preview

Abstract:

Multispectral remote sensing images are used as research objects for different band images are highly complementary. Pixel is the basic element for image classification. Spectral information and two order invariant moments are proposed to describe pixel characteristics. The self-organizing feature map neural network is used to realize an unsupervised classification. A fringe area of Qingdao is studied and its classification map is obtained using this method. Experimental results show that the classification accuracy is satisfactory by the proposed method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

905-908

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Cakir, F. Sivrikaya, S. Keles, Forest cover change and fragmentation using Landsat data in Maçka state forest enterprise in Turkey, Environ Monit Assess. 137 (2008):51-66.

DOI: 10.1007/s10661-007-9728-9

Google Scholar

[2] S. Andre´fouet, M. Guzman, Distribution, Status and geomorphology-biodiversity relationship in Kuna Yala (San Blas) Archipelago, Caribbean Panama, Coral Reefs. 24 (2005) 31-42.

DOI: 10.1007/s00338-004-0444-4

Google Scholar

[3] P. H. Gowda, L. Chavez , D. Colaizzi, R. Evett, A. Howell, ET mapping for agricultural water management: present status and challenges, Irrigate Science. 26 (2008) 223-237.

DOI: 10.1007/s00271-007-0088-6

Google Scholar

[4] R. M. Haralick, K. Shanmugam, Texture features for image classification, IEEE Trans. on Sys, Man, and Cyb. 6 (1973) 610-621.

Google Scholar

[5] S. W. Myint, Fractal approaches in texture analysis and classification of remotely sensed data: comparisons with spatial autocorrelation techniques and simple descriptive statistics, International Journal of Remote Sensing. 9(2003) 1925-1947.

DOI: 10.1080/01431160210155992

Google Scholar

[6] T. Ojala, M. Pietikainen, T. Maenpaa, Multiresolution grayscale and rotation invariant texture classification with local binary patterns, IEEE Trans on Pattern Analysis and Machine Inteligence. 7 (2002) 971-986.

DOI: 10.1109/tpami.2002.1017623

Google Scholar

[7] M.Guler, T. Yomralihoglu, S. Reis, Using landsat data to determine land use/land cover changes in Samsun, Turkey, Environ Monit Assess. 127 (2007) 155-167.

DOI: 10.1007/s10661-006-9270-1

Google Scholar

[8] J. Zhang, Fully-fuzzy supervised classification of sub-urban land cover from remotely sensed imagery: statistical and artificial neural network approaches, International Journal of Remote Sensing. 4(2001) 615-628.

DOI: 10.1080/01431160050505883

Google Scholar

[9] F. Melgani, L. Bruzzone, Classification of hyperspectral remote sensing images with support vector machines, IEEE Transactions on Geoscience and Remote Sensing. 8(2004) 1778-1790.

DOI: 10.1109/tgrs.2004.831865

Google Scholar

[10] Z. Kato , J. Zerubia, M. Berthod, Unsupervised parallel image classification using Markovian models, Pattern Recognition. 32 (1999) 591-604.

DOI: 10.1016/s0031-3203(98)00104-6

Google Scholar

[11] M.A.T. Figueiredo, A.K. Jain, Unsupervised learning of finite mixture models, IEEE Transactions on Pattern Analysis and Machine Intelligence. 3(2002) 1-16.

DOI: 10.1109/34.990138

Google Scholar

[12] W.Cao, A remote sensing image fusion method based on PCA transform and wavelet packet transform, Proceedings of IEEE. 2(2003) 975-981.

DOI: 10.1109/icnnsp.2003.1280764

Google Scholar

[13] T. Kohonen; E. Oja; O. Simula; A. Visa; J. Kangas, Engineering applications of the self-organizing map, Proceedings of IEEE. 84(1996) 1358-1384.

DOI: 10.1109/5.537105

Google Scholar