[1]
K. J. Bathe, Finite Element Procedures in Engineering Analysis. Prentice-Hall, Englewood Cliffs, New Jersey, 1982.
Google Scholar
[2]
J. N. Reddy, On locking free shear deformable finite elements, Computer Methods in Applied Mechanics and Engineering, 149(1997)113-132.
DOI: 10.1016/s0045-7825(97)00075-3
Google Scholar
[3]
M. A. Crisfield, Nonlinear finite element analysis of solids and structures, vol 2. Chichester: John Wiley & Sons, Inc, (1997)
Google Scholar
[4]
C. A. Felippa, B. Haugen, A unified formulation of small-strain corotational finite elements: I. Theory, Computer Methods in Applied Mechanics and Engineering, 194(2005)2285-2335.
DOI: 10.1016/j.cma.2004.07.035
Google Scholar
[5]
T. Belytschko, L. W. Glaum, Applications of higher order corotational stretch theories to nonlinear finite element analysis, Computers and Structures, 10(1979)175-182.
DOI: 10.1016/0045-7949(79)90085-3
Google Scholar
[6]
J. Banovec, An efficient finite element method for elastic-plastic analysis of plane frames, in: T. Wunderlich, E. Stein and K. J. Bathe eds., Nonlinear Finite Element Analysis in Structural Mechanics, (Springer, 1981) 385-402.
DOI: 10.1007/978-3-642-81589-8_21
Google Scholar
[7]
C. Chebl and K. W. Neale, A finite element method for elastic-plastic beams and columns at large deflections, Comput. Struct, 18 (1984) 255-261.
DOI: 10.1016/0045-7949(84)90123-8
Google Scholar
[8]
C. Cichon, Large displacements in-plane analysis of elastic-plastic frames, Comput. Struct., 19(1984)737-745.
DOI: 10.1016/0045-7949(84)90173-1
Google Scholar
[9]
B. A. Coulter and R. E. Miller, Loading, unloading and reloading of a generalized plane plastica, Int. J. Numer. Methods Engrg. 28 (1989) 1645-1660.
DOI: 10.1002/nme.1620280713
Google Scholar
[10]
L. Haefner and K. J. Willam, Large deflection formulations of a simple beam element including shear deformations, Engrg. Comput., 1 (1984) 359-368.
DOI: 10.1108/eb023592
Google Scholar
[11]
K. M. Hsiao, E. Y. Hou and K. V. Spiliopoulos, Large displacement analysis of elasto-plastic frames, Comput. Struct., 28 (1988)627-633.
DOI: 10.1016/0045-7949(88)90007-7
Google Scholar
[12]
A. Ibrahimbegovic and F. Frey, Finite element analysis of linear and nonlinear deformations of elastic initially curved beams, Int. J. Numer. Methods Engrg., 36 (1993) 3239-3258.
DOI: 10.1002/nme.1620361903
Google Scholar
[13]
A. IbrahimbegoviE, On FE implementation of geometrically nonlinear Reissner's beam theory: Three-dimensional curved beam elements, Comput. Methods Appl. Mech. Engrg., 122 (1995) 11-26.
DOI: 10.1016/0045-7825(95)00724-f
Google Scholar
[14]
M. Iura, Effects of coordinate system on the accuracy of corotational formulation for Bernoulli-Euler's beam, Int. J. Solids Struct., 31(1994)2793-2806.
DOI: 10.1016/0020-7683(94)90069-8
Google Scholar
[15]
P. K. V. V. Nukala, D. W. White, A mixed finite element for three dimensional nonlinear analysis of steel frames, Comput. Methods Appl. Mech. Engrg. 193 (2004) 2507–2545.
DOI: 10.1016/j.cma.2004.01.029
Google Scholar
[16]
A. Kassimali, Large deformation analysis of elastic-plastic frames, J. Struct. Engrg., ASCE, 109 (1983) 1869-1886.
DOI: 10.1061/(asce)0733-9445(1983)109:8(1869)
Google Scholar
[17]
R. L. Taylor, F. C. Filippou, A. Saritas et al., A mixed finite element method for beam and frame problems, Computational Mechanics, 31 (2003) 192-203.
DOI: 10.1007/s00466-003-0410-y
Google Scholar
[18]
M. H. Scott, G. L. Fenves, Plastic hinge integration methods for the force-based beam-column elements, J. Struct. Engrg., 132 (2006) 244–252.
DOI: 10.1061/(asce)0733-9445(2006)132:2(244)
Google Scholar
[19]
K. Kondoh and S. N. Atluri, Large-deformation, elasto plastic analysis of frames under non conservative loading, using explicitly derived tangent stiffness based on assumed stresses, Comput. Mech., 2 (1987) l-25.
DOI: 10.1007/bf00282040
Google Scholar
[20]
J. L. Meek and S. Loganathan, Geometric and material nonlinear behaviour of beam-columns, Comput. Struct., 34 (1990)87-100.
DOI: 10.1016/0045-7949(90)90303-j
Google Scholar
[21]
R. Y. S. Pak and E. J. Stauffer, Nonlinear finite deformation analysis of beams and columns, J. Engrg. Mech., ASCE, 120 (1994)2136-2153.
DOI: 10.1061/(asce)0733-9399(1994)120:10(2136)
Google Scholar
[22]
M. S. Park and B. C. Lee, Geometrically non-linear and elastoplastic three-dimensional shear flexible beam element of von Mises-type hardening material, Int. J. Numer. Methods Engrg., 39(1996) 383-408.
DOI: 10.1002/(sici)1097-0207(19960215)39:3<383::aid-nme859>3.0.co;2-f
Google Scholar
[23]
H. B. Coda and M. Greco, A simple FEM formulation for large deflection 2D frame analysis based on position description, Comput. Methods Appl. Mech. Engrg., 193 (2004) 3541–3557.
DOI: 10.1016/j.cma.2004.01.005
Google Scholar
[24]
M. Shugyo, Elastoplastic large deflection analysis of three-dimensional steel frames, Journal of Structural Engineering, 129 (2003) 1259–1267.
DOI: 10.1061/(asce)0733-9445(2003)129:9(1259)
Google Scholar
[25]
M. Saje, A variational principle for finite planar deformation of straight slender elastic beams, Int. J. Solids Struct., 26 (1990)887-900.
DOI: 10.1016/0020-7683(90)90075-7
Google Scholar
[26]
M. Saje, Finite element formulation of finite planar deformation of curved elastic beams, Comput. Struct., 39 (1991) 327-337.
DOI: 10.1016/0045-7949(91)90030-p
Google Scholar
[27]
M. Saje and G. Jelenic, Finite element formulation of hyperelastic plane frames subjected to nonconservative loads, Comput. Struct., 50(1994)177-189.
DOI: 10.1016/0045-7949(94)90294-1
Google Scholar
[28]
G. Shi and S. N. Atluri, Elasto-plastic large deformation analysis of space-frames: A plastic hinge and stress-based explicit derivation of tangent stiffness, Int. J. Numer. Methods. Engrg., 26 (1988) 589-615.
DOI: 10.1002/nme.1620260306
Google Scholar
[29]
G. Turkalj, J. Brnic, J. Prpic-Orsic, ESA formulation for large displacement analysis of framed structures with elastic-plasticity, Computers & structures., 82(2004)2001-2013.
DOI: 10.1016/j.compstruc.2003.07.006
Google Scholar