A Simple Co-Rotational Finite Planar Beam Element of Geometrical and Material Nonlinearity

Article Preview

Abstract:

A simple geometrical and material nonlinear co-rotational planar beam element of field consistency is proposed. Herein the element which produces a local stiffness matrix of 3 by 3 other than 6 by 6 is developed. Material nonlinearity is taken into account on the base of yield function of element internal forces. By applying static equilibrium relationship of classic beam theory for the transferring of local element nodal force to global element nodal force, a new transformation matrix different from the nodal displacement transformation matrix is established. Although this results in an asymmetric global tangential stiffness matrix, the new transformation is simpler, and gives rise to field consistency and makes it possible to compute very large beam deflection without remeshing of the deformed structure. Computations of numerical example indicates that formulations for the nonlinear beam element are of validation and high efficiency

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1163-1167

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. J. Bathe, Finite Element Procedures in Engineering Analysis. Prentice-Hall, Englewood Cliffs, New Jersey, 1982.

Google Scholar

[2] J. N. Reddy, On locking free shear deformable finite elements, Computer Methods in Applied Mechanics and Engineering, 149(1997)113-132.

DOI: 10.1016/s0045-7825(97)00075-3

Google Scholar

[3] M. A. Crisfield, Nonlinear finite element analysis of solids and structures, vol 2. Chichester: John Wiley & Sons, Inc, (1997)

Google Scholar

[4] C. A. Felippa, B. Haugen, A unified formulation of small-strain corotational finite elements: I. Theory, Computer Methods in Applied Mechanics and Engineering, 194(2005)2285-2335.

DOI: 10.1016/j.cma.2004.07.035

Google Scholar

[5] T. Belytschko, L. W. Glaum, Applications of higher order corotational stretch theories to nonlinear finite element analysis, Computers and Structures, 10(1979)175-182.

DOI: 10.1016/0045-7949(79)90085-3

Google Scholar

[6] J. Banovec, An efficient finite element method for elastic-plastic analysis of plane frames, in: T. Wunderlich, E. Stein and K. J. Bathe eds., Nonlinear Finite Element Analysis in Structural Mechanics, (Springer, 1981) 385-402.

DOI: 10.1007/978-3-642-81589-8_21

Google Scholar

[7] C. Chebl and K. W. Neale, A finite element method for elastic-plastic beams and columns at large deflections, Comput. Struct, 18 (1984) 255-261.

DOI: 10.1016/0045-7949(84)90123-8

Google Scholar

[8] C. Cichon, Large displacements in-plane analysis of elastic-plastic frames, Comput. Struct., 19(1984)737-745.

DOI: 10.1016/0045-7949(84)90173-1

Google Scholar

[9] B. A. Coulter and R. E. Miller, Loading, unloading and reloading of a generalized plane plastica, Int. J. Numer. Methods Engrg. 28 (1989) 1645-1660.

DOI: 10.1002/nme.1620280713

Google Scholar

[10] L. Haefner and K. J. Willam, Large deflection formulations of a simple beam element including shear deformations, Engrg. Comput., 1 (1984) 359-368.

DOI: 10.1108/eb023592

Google Scholar

[11] K. M. Hsiao, E. Y. Hou and K. V. Spiliopoulos, Large displacement analysis of elasto-plastic frames, Comput. Struct., 28 (1988)627-633.

DOI: 10.1016/0045-7949(88)90007-7

Google Scholar

[12] A. Ibrahimbegovic and F. Frey, Finite element analysis of linear and nonlinear deformations of elastic initially curved beams, Int. J. Numer. Methods Engrg., 36 (1993) 3239-3258.

DOI: 10.1002/nme.1620361903

Google Scholar

[13] A. IbrahimbegoviE, On FE implementation of geometrically nonlinear Reissner's beam theory: Three-dimensional curved beam elements, Comput. Methods Appl. Mech. Engrg., 122 (1995) 11-26.

DOI: 10.1016/0045-7825(95)00724-f

Google Scholar

[14] M. Iura, Effects of coordinate system on the accuracy of corotational formulation for Bernoulli-Euler's beam, Int. J. Solids Struct., 31(1994)2793-2806.

DOI: 10.1016/0020-7683(94)90069-8

Google Scholar

[15] P. K. V. V. Nukala, D. W. White, A mixed finite element for three dimensional nonlinear analysis of steel frames, Comput. Methods Appl. Mech. Engrg. 193 (2004) 2507–2545.

DOI: 10.1016/j.cma.2004.01.029

Google Scholar

[16] A. Kassimali, Large deformation analysis of elastic-plastic frames, J. Struct. Engrg., ASCE, 109 (1983) 1869-1886.

DOI: 10.1061/(asce)0733-9445(1983)109:8(1869)

Google Scholar

[17] R. L. Taylor, F. C. Filippou, A. Saritas et al., A mixed finite element method for beam and frame problems, Computational Mechanics, 31 (2003) 192-203.

DOI: 10.1007/s00466-003-0410-y

Google Scholar

[18] M. H. Scott, G. L. Fenves, Plastic hinge integration methods for the force-based beam-column elements, J. Struct. Engrg., 132 (2006) 244–252.

DOI: 10.1061/(asce)0733-9445(2006)132:2(244)

Google Scholar

[19] K. Kondoh and S. N. Atluri, Large-deformation, elasto plastic analysis of frames under non conservative loading, using explicitly derived tangent stiffness based on assumed stresses, Comput. Mech., 2 (1987) l-25.

DOI: 10.1007/bf00282040

Google Scholar

[20] J. L. Meek and S. Loganathan, Geometric and material nonlinear behaviour of beam-columns, Comput. Struct., 34 (1990)87-100.

DOI: 10.1016/0045-7949(90)90303-j

Google Scholar

[21] R. Y. S. Pak and E. J. Stauffer, Nonlinear finite deformation analysis of beams and columns, J. Engrg. Mech., ASCE, 120 (1994)2136-2153.

DOI: 10.1061/(asce)0733-9399(1994)120:10(2136)

Google Scholar

[22] M. S. Park and B. C. Lee, Geometrically non-linear and elastoplastic three-dimensional shear flexible beam element of von Mises-type hardening material, Int. J. Numer. Methods Engrg., 39(1996) 383-408.

DOI: 10.1002/(sici)1097-0207(19960215)39:3<383::aid-nme859>3.0.co;2-f

Google Scholar

[23] H. B. Coda and M. Greco, A simple FEM formulation for large deflection 2D frame analysis based on position description, Comput. Methods Appl. Mech. Engrg., 193 (2004) 3541–3557.

DOI: 10.1016/j.cma.2004.01.005

Google Scholar

[24] M. Shugyo, Elastoplastic large deflection analysis of three-dimensional steel frames, Journal of Structural Engineering, 129 (2003) 1259–1267.

DOI: 10.1061/(asce)0733-9445(2003)129:9(1259)

Google Scholar

[25] M. Saje, A variational principle for finite planar deformation of straight slender elastic beams, Int. J. Solids Struct., 26 (1990)887-900.

DOI: 10.1016/0020-7683(90)90075-7

Google Scholar

[26] M. Saje, Finite element formulation of finite planar deformation of curved elastic beams, Comput. Struct., 39 (1991) 327-337.

DOI: 10.1016/0045-7949(91)90030-p

Google Scholar

[27] M. Saje and G. Jelenic, Finite element formulation of hyperelastic plane frames subjected to nonconservative loads, Comput. Struct., 50(1994)177-189.

DOI: 10.1016/0045-7949(94)90294-1

Google Scholar

[28] G. Shi and S. N. Atluri, Elasto-plastic large deformation analysis of space-frames: A plastic hinge and stress-based explicit derivation of tangent stiffness, Int. J. Numer. Methods. Engrg., 26 (1988) 589-615.

DOI: 10.1002/nme.1620260306

Google Scholar

[29] G. Turkalj, J. Brnic, J. Prpic-Orsic, ESA formulation for large displacement analysis of framed structures with elastic-plasticity, Computers & structures., 82(2004)2001-2013.

DOI: 10.1016/j.compstruc.2003.07.006

Google Scholar