Real-Time Monitoring of Acetaldehyde in Air by Cataluminescence-Based Gas Sensor

Article Preview

Abstract:

A highly sensitive, simple and selective gas sensor was developed for the determination of trace acetaldehyde in air based on cataluminescence (CTL) on nano-sized Al2Ti2O7. The gas sensor showed high selectivity for acetaldehyde at 515 nm and satisfying activity at 295°C. The linear range of the CTL intensity versus concentration of acetaldehyde was 1~65 mg/m3, and the detection limit (3σ) was 0.5 mg/m3. No interference was observed while the foreign substances, such as ammonia, ethanol, formaldehyde, benzene, carbon monoxide and sulfur dioxide, were passing through the sensor. The gas sensor displayed good stability for continuously introducing 10 mg/m3 acetaldehyde over 60 h, and allowed real-time monitoring of acetaldehyde in air.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1594-1597

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.A. Mohameda, A.T. Mubaraka, M.H. Marestani, K.F. Fawy: Talanta 74 (2008), P. 578

Google Scholar

[2] P. Sritharathikhun, M. Oshima, S. Motomizu: Talanta 67 (2005), P. 1014

Google Scholar

[3] K. Motyka, P. Mikuska: Anal. Chim. Acta 518 (2004), P. 51

Google Scholar

[4] B.X. Li, M.L. Liu, Z.J. Zhang, C.L. Xu: Anal. Sci. 19 (2003), P. 1643

Google Scholar

[5] Z.H. Song, S.A. Hou: Int. J. Environ. Anal. Chem. 83 (2003), P. 807

Google Scholar

[6] G. Burini, R. Coli: Anal. Chim. Acta 511 (2004), P. 155

Google Scholar

[7] J.F. Liu, J.F. Peng, Y.G. Chi, G.B. Jiang: Talanta 65 (2005), P. 705

Google Scholar

[8] J.Y. Tian: J. Food Compos. Anal. 23 (2010), P. 475

Google Scholar

[9] M.E. Ghica, R. Pauliukaite, N. Marchand, E. Devic: Anal. Chimica Acta 591 (2007), P. 80

Google Scholar

[10] M. Breysse, B. Claudel, L. Faure, M. Guenin, R. J. Williams: J. Catal. 45 (1976), P. 137

Google Scholar

[11] M. Nakagawa, I. Yamamoto, N. Yamashita: Anal. Sci. 14 (1998), P. 209

Google Scholar

[12] M. Nakagawa, T. Okabayashi, T. Fujimoto, K. Utsunomiya, I. Yamamoto, T. Wada, Y. Yamashita, N. Yamashita: Sens. Actuators B 51 (1998), P. 159

DOI: 10.1016/s0925-4005(98)00183-x

Google Scholar

[13] T. Okabayashi, T. Fujimoto, I. Yamamoto, K. Utsunomiya, T. Wada, Y. Yamashita, N. Yamashita, M. Nakagawa: Sens. Actuators B 64 (2000), P. 54

DOI: 10.1016/s0925-4005(99)00483-9

Google Scholar

[14] T. Okabayashi, T. Toda, I. Yamamoto, K. Utsunomiya, N. Yamashita, M. Nakagawa: Sens. Actuators B 74 (2001), P. 152

Google Scholar

[15] K.W. Zhou, P. Zhang, W. Chen: Acta Chim. Sinica 68 (2010), P. 921

Google Scholar

[16] K.W. Zhou, Z.Q. Zhang, L.J. Xing, X. Li, C.X. Fu: Mater. Sci. Forum 694 (2011), P. 184

Google Scholar

[17] K.W. Zhou, X.R. Zhang: Chinese Journal of Analytical Chemistry 32 (2004), P. 25

Google Scholar

[18] K.W. Zhou, X.L. Ji, N. Zhang, X.R. Zhang: Sens. Actuators B 119 (2006), P. 392

Google Scholar