A Local Radial Point Interpolation Method for Two-Dimensional Schrödinger Equation

Article Preview

Abstract:

A local radial point interpolation method is employed to the simulation of the time dependent Schrödinger equation with arbitrary potential function. Local weak form of the time dependent Schrödinger equation is obtained and radial point interpolation shape functions are applied in the space discretization. Computations are carried out for an example of time dependent Schrödinger equation having analytical solutions. Numerical results agreed with analytical solutions very well.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1888-1893

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Y. Hajj: J. Phys. B At. Mol. Phys., Vol. 18(1985), p.1

Google Scholar

[2] A. Arnold: VLSI Design, Vol. 6(1998), p.313

Google Scholar

[3] W. Huang, C. Xu, S. T. Chu, S. K. Chaudhuri: J. Lightwave Technol, Vol. 10(1992), p.295

Google Scholar

[4] W.Z. Dai, R. Nassar: J. COMPUT. MATH., Vol. 18(2000), p.123

Google Scholar

[5] J. I. Ramos: APPL. MATH. COMP., Vol. 133(2002), p.1

Google Scholar

[6] M. Subasi: NUMER. METH. PART. D. E., Vol. 18(2002), p.752.

Google Scholar

[7] M. S. Ismail, T.R. Taha: MATH. COMPUT. SIMULAT., Vol. 56(2001), p.547

Google Scholar

[8] W. T. Ang, K.C. Ang: NUMER. METH. PART. D. E., Vol. 20(2004), p.843

Google Scholar

[9] J. Kalita, P. Chhabra, S. Kuma:J. COMPUT. APPL. MATH., Vol. 197(2006), p.141

Google Scholar

[10] M. Dehghan, Ali Shokri.:COMPUT. MATH. APPL. , Vol. 549(2007.), p.136

Google Scholar

[11] M. Dehghan, D. Mirzaei: ENG. ANAL. BOUND. ELEM., Vol. 32(2008), p.747

Google Scholar