Microstructures and Electrocatalytic Properties of Nitrogen Doped Graphene Synthesized by Pyrolysis of Metal Tetrapyrazinoporphyrazine

Article Preview

Abstract:

Nitrogen doped graphene (NG) was synthesized by chemical vapor deposition at 950 °C, using metal tetrapyrazinoporphyrazine (MPTpz, M= Fe, Co, the mass ratio of FePTPz/ CoPTpz is 1: 1) as a precursor. IR testing of FePTpz indicates the existence of C−N and C=N, which was prepared through microwave method. The NG shows a uniformly distributed and cotton-like structure. TEM images suggests that the single and multilayer NG coexists in the products and it is of a graphite-like structure. Electrocatalytic activity of the NG towards oxygen reduction reaction (ORR) was investigated by the cyclic voltammetry at different scan rates from 20 mV·s-1 to 100 mV·s-1 in an acidic solution. Peak currents and background currents of the NG rose as the scan rate increasing. The maximum peak current is 290.24 mA·cm−2, exhibiting well electrocatalytic activity of the NG toward ORR.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1762-1768

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov: Science Vol. 306 (2004), p.666.

DOI: 10.1126/science.1102896

Google Scholar

[2] H. Wang, T. Maiyalagan, X. Wang: ACS catal. Vol. 2 (2012), p.781.

Google Scholar

[3] T.W. Chen, J.Y. Xu, Z.H. Sheng, K. Wang, F.B. Wang, T.M. Liang, X.H. Xia: Electrochem. Commun. Vol. 16 (2012), p.30.

Google Scholar

[4] S.J. Park, R.S. Ruoff: Nat. Nanotechnol. Vol. 4 (2009), p.217.

Google Scholar

[5] A.K. Geim, K.S. Novoselov: Nat. Mater. Vol. 6 (2007), p.183.

Google Scholar

[6] Z.S. Wu, W. Ren, L. Xu, F. Li, H.M. Cheng: ACS nano Vol. 5 (2011), p.5463.

Google Scholar

[7] Z.G. Mou, X.Y. Chen, Y.K. Du, X.M. Wang, P. Yang, S.D. Wang: Appl. Surf. Sci. Vol. 258 (2011), p.1704.

Google Scholar

[8] N. Aqtash, I. Vasiliev: J. Phys. Chem. C Vol. 115 (2011), p.18500.

Google Scholar

[9] M.D. Stoller, S.J. Park, Y.W. Zhu, J.H. An, R.S. Ruoff: Nano Lett. Vol. 8 (2008), p.3498.

Google Scholar

[10] D. Chen, L.H. Tang, J.H. Li: Chem. Soc. Rev. Vol. 39 (2010), p.3157.

Google Scholar

[11] L.H. Tang, Y. Wang, Y.M. Li, H.B. Feng, J. Lu, J.H. Li: Adv. Funct. Mater. Vol. 19 (2009), p.2782.

Google Scholar

[12] Y.M. Li, L.H. Tang, J.H. Li: Electrochem. Commun. Vol. 11 (2009), p.846.

Google Scholar

[13] M. Zhou, Y.M. Zhai, S.J. Dong: Anal. Chem. Vol. 81 (2009), p.5603.

Google Scholar

[14] L.H. Tang, H.B. Feng, J.S. Cheng, J.H. Li: Chem. Commun. Vol. 46 (2010), p.5882.

Google Scholar

[15] X. Wang, L.J. Zhi, K. Mullen: Nano Lett. Vol. 8 (2008), p.323.

Google Scholar

[16] X.R. Wang, X.L.L. Zhang, Y.K. Yoon, P.K. Weber, H.L. Wang, J. Guo, H.J. Dai: Science Vol. 324 (2009), p.768.

Google Scholar

[17] D.C. Wei, Y.Q. Liu, Y. Wang, H.L. Zhang, L.P. Huang, G. Yu: Nano Lett. Vol. 9 (2009), p.1752.

Google Scholar

[18] L.S. Panchakarla, K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U.V. Waghmare, C.N.R. Rao: Adv. Mater. Vol. 21 (2009), p.4726.

Google Scholar

[19] M. Calandra, F. Mauri: Phys. Rev. B Vol. 76 (2007), p.1.

Google Scholar

[20] L.T. Qu, Y. Liu, J.B. Baek, L.M. Dai: ACS Nano Vol. 4 (2010), p.1321.

Google Scholar

[21] S.J. Toal, W.C. Trogler: J. Mater. Chem. Vol. 16 (2006), p.2871.

Google Scholar

[22] J.Y. Yi, J. Bernholc: Phys. Rev. B Vol. 47 (1993), p.1708.

Google Scholar

[23] X. Wang, Y. Liu, D. Zhu, L. Zhang, H. Ma, M. Yao, B. Zhang: J. Phys. Chem. B Vol. 106 (2002), p.2186.

Google Scholar

[24] C.P. Ewels, M. Glerup: Journal of Nanoscience & Nanotechnology Vol. 5 (2005), p.1345.

Google Scholar

[25] J. Robertson, C.A. Davis: Diam. Relat. Mater. Vol. 4 (1995), p.441.

Google Scholar

[26] J. Casanovas, J.M. Ricart, J. Rubio, F. Illas, M.J. Jiménez-Mateos: J. Am. Chem. Soc. Vol. 118 (1996), p.8071.

Google Scholar

[27] L.P. Zhang, Z.H. Xia: J. Phys. Chem. C Vol. 115 (2011), p.11170.

Google Scholar

[28] M.N. Groves, A.S.W. Chan, C. Malardier-Jugroot, M. Jugroot: Chem. Phys. Lett. Vol. 481 (2009), p.214.

DOI: 10.1016/j.cplett.2009.09.074

Google Scholar

[29] P.H. Matter, L. Zhang, U.S. Ozkan: J. Catal. Vol. 239 (2006), p.83.

Google Scholar

[30] K.R. Lee, K.U. Lee, J.W. Lee, B.T. Ahn, S.I. Woo: Electrochem. Commun. Vol. 12 (2010), p.1052.

Google Scholar

[31] L. Qu, Y. Liu, J.B. Beak, L. Dai: ACS Nano. Vol. 4 (2010), p.1321.

Google Scholar

[32] L. Tang, Y. Wang, Y. Li, H. Feng, J. Lu, J. Li: Adv. Funct. Mater. Vol. 19 (2009). p.2782.

Google Scholar

[33] L.T. Qu, Y. Liu, J.B. Baek, L.M. Dai: ACS Nano Vol. 4 (2010), p.1321.

Google Scholar

[34] N. Li, Z. Wang, K. Zhao, Z. Shi, Z. Gu, S. Xu: Carbon Vol. 48 (2010), p.255.

Google Scholar

[35] D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu: Nano Lett. Vol. 9 (2009), p.1752.

Google Scholar

[36] X. Li, H. Wang, J.T. Robinson, H. Sanchez, G. Diankov, H. Dai: J. Am. Chem. Soc. Vol. 131 (2009), p.15939.

Google Scholar

[37] S. Wakeland, R. Martinez, J.K. Grey, C.C. Luhrs: Carbon. Vol. 48 (2010), p.3463.

Google Scholar

[38] Z.W. Xu, H.J. Li, G.X. Cao, Q.L. Zhang, K.Z. Li, X.N. Zhao: J. Mol. Catal. A Vol. 335 (2011), P. 89.

Google Scholar

[39] R.W. Stevens, S.S.C. Chuanga, B.H. Davis: Appl. Catal. A Vol. 252 (2003), p.57.

Google Scholar