[1]
Chen Le ping, Zhou Quan: Research and Application of Beryllium Copper Alloy. Material & Heat Treatment, 38(22), (2009), pp.14-18.
Google Scholar
[2]
Pan Qi han: Beryllium Copper Alloy, A High Elastic Material. Automobile Technology of Material, 12(2003), pp.8-12.
Google Scholar
[3]
Dong Chao qun, Yi Jun ping: Prospect of Beryllium Copper Alloy's Market and Application. Chinese of Journal Rare Earth, 29(3) , (2005), pp.350-356.
Google Scholar
[4]
Laughlin D E, Cahn J W: Spinodal decomposition in age hardening copper titanium. Acta Metall, 23(3), (1975), pp.329-339.
DOI: 10.1016/0001-6160(75)90125-x
Google Scholar
[5]
Datta A, Soffa W A: The structure and proterties of age hardened Cu-Ti alloys. Acta Metall, 24 (1976), pp.987-1001.
DOI: 10.1016/0001-6160(76)90129-2
Google Scholar
[6]
Zhao Dong-mei, Dong Qi-ming, Liu Ping, etc. al: Transformation and strengthening of early stage of aging in Cu-3. 2Ni-0. 75Si alloy. The Chinese Journal of Nonferrous Metals, 12(6), (2002), pp.1167-1170.
Google Scholar
[7]
Rensei Futatsuku: Development of copper alloy for lesdframe. Journal of the Japan Copper and Brass Research Associatium, 36(1997), pp.25-32.
Google Scholar
[8]
Donovan P E, Thompson A W. Microstructure changes during ageing of Cu-2. 5wt% Ti [J]. Journal of Materials Science, 1989, 24: 756-760.
DOI: 10.1007/bf01107470
Google Scholar
[9]
Bonfield W, Edwardsb C: Precipitation hardening in Cu-1. 8wt%Be-0. 28wt%Co. Journal of Material Science, 9(1974), pp.398-408.
Google Scholar
[10]
Masamichi Miki, Yoshikiyo Ogino: Effect of Quenching Temperature on the Intragranular and Cellular precipitations in Cu-1. 5%Be Binary Alloy. Material Transactions, JIM, 36 (9), ( 1995), pp.1118-1123.
DOI: 10.2320/matertrans1989.36.1118
Google Scholar
[11]
Donoso E, Varschavsky A: Microcalorimetric Evaluation of Precipitation in Cu-2Be-0. 2Mg. Journal of Thermal Analysis and Calorimetry, 63(2001), pp.249-266.
Google Scholar
[12]
Chihiro Watanabe, Toshiro Sakai, Ryoichi Monzen: Misfit strains of precipitations phase and dimensional changes in Cu-Be alloys. Philosophical Magazine, 88(9) , (2008), pp.1401-1410.
DOI: 10.1080/14786430802178087
Google Scholar
[13]
Atsushi Yamamoto, Ryoichi Nozato, Takashi Morimoto, et al.: Calorimetric Study on Precipitation in Cu-Be Alloys. Material Transaction, JIM, 34(4), (1993), pp.312-318.
DOI: 10.2320/matertrans1989.34.312
Google Scholar
[14]
Bouzroura N, Kadi-Hanifi M.: Influence of Cd and Ge on the kinetics of Guinier-Preston zone formation in Cu-Be alloys. Philosophical Magazine Letters, 84(2), ( 2004), pp.87-92.
DOI: 10.1080/09500830310001628211
Google Scholar
[15]
Ungar T, Borbly A: The effect of dislocation contrast on x-ray line broadening: A new approach to line profile analysis. Applied Physics Letter, 69(21), (1996), pp.3173-3175.
DOI: 10.1063/1.117951
Google Scholar
[16]
Zhou Xiao-zhong: Microstructure, Properties and related basic research on novel Cu-Ni-Zn-Al alloys with high strength, electronic conductivity and elasticity. Chang Sha: Central South University, 2010, pp.1-50.
Google Scholar
[17]
Ditchek B, Schwartzl H: Diffraction study of spinodal decomposition in Cu-10wt%Ni-6wt%Sn. Acta Metallurgica, 28(1980), pp.807-822.
DOI: 10.1016/0001-6160(80)90157-1
Google Scholar
[18]
Miyazaki. T, Takagishi. S, Morih. H, et al.: The phase of decomposition of iron-molybdenum binary alloys by spinodal mechanism. Acta Metallurgica, 28 (1980), pp.1143-1153.
DOI: 10.1016/0001-6160(80)90097-8
Google Scholar
[19]
Dong Qiming, Zhao Dongmei, Liuping, et al.: Spinodal Decomposition in Cu-3. 2Ni-0. 75Si Alloy during Aging. Transactions of metal heat treatment, 23(4), (2002), pp.6-8.
Google Scholar