[1]
Y. Zhao, C.H. Fung, B. Qi, H.K. Lo: Quantum Hacking: Experimental Demonstration of Time-shift Attack against Practical Quantum-Key-Distribution Systems, Physical Review A(2008).
DOI: 10.1103/physreva.78.042333
Google Scholar
[2]
F.H. Xu, B. Qi, H.K. Lo: Experimental Demonstration of Phase-remapping Attack in a Practical Quantum Key Distribution Systems, New Journal of Physics. (2010).
DOI: 10.1088/1367-2630/12/11/113026
Google Scholar
[3]
C. Crépeau,K. Joe: Achieving Oblivious Transfer Using Weakened Security Assumptions. FOCS, IEEE. (1988), pp.42-52.
Google Scholar
[4]
K. Joe: Founding cryptography on oblivious transfer, STOC, ACM. (1988), pp.20-31.
Google Scholar
[5]
B. Gilles, C. Crépeau, J. Richard, D. Langlois: A Quantum Bit Commitment Scheme Provably Unbreakable by both Parties, FOCS, IEEE. (1993), pp.362-371.
DOI: 10.1109/sfcs.1993.366851
Google Scholar
[6]
D. Mayers: Unconditionally Secure Quantum Bit Commitment is Impossible, Physical Review Letters (APS), 78 (17) (1997), p.3414–3417.
DOI: 10.1103/physrevlett.78.3414
Google Scholar
[7]
I. Damgård, S. Fehr, L. Salvail, C. Schaffner: Cryptography In the Bounded Quantum-Storage Model, FOCS, IEEE. (2005), pp.449-458.
DOI: 10.7146/brics.v12i20.21886
Google Scholar
[8]
C. Cachin, C. Crépeau, J. Marcil: Oblivious Transfer with a Memory-Bounded Receiver, FOCS, IEEE. (1998), pp.493-502.
Google Scholar
[9]
S. Dziembowski,M. Ueli: On Generating the Initial Key in the Bounded-Storage Model, LNCS, Eurocrypt, Springer. (2004), pp.126-137.
Google Scholar
[10]
N. Chandran, R. Moriarty, V. Goyal, R. Ostrovsky: Position-Based Cryptography, (2009).
Google Scholar
[11]
A. Kent, B. Munro, T. Spiller: Quantum Tagging with Cryptographically Secure Tags, (2010).
Google Scholar
[12]
H. Buhrman, N. Chandran, S. Fehr, R. Gelles, V. Goyal, R. Ostrovsky, C. Schaffner: Position-Based Quantum Cryptography: Impossibility and Constructions, (2010).
DOI: 10.1137/130913687
Google Scholar
[13]
Post-quantum cryptography, http: /pqcrypto. org.
Google Scholar
[14]
J. Watrous: Zero-Knowledge against Quantum Attacks, SIAM J, Comput, 39 (1), (2009), p.25–58.
DOI: 10.1137/060670997
Google Scholar