[1]
M. Fillippone, F. Camastra, F. Masulli, S. Rovetta, A survey of kernel and spectral methods for clustering. Pattern Recognition, Vol. 41, No. 1 (2008), pp.176-190.
DOI: 10.1016/j.patcog.2007.05.018
Google Scholar
[2]
A.K. Jain, M.N. Murty, P.J. Flyn, Data clustering: a review. ACM Computing Surveys, Vol. 31, No. 3 (1999), pp.256-323.
Google Scholar
[3]
R. Xu, D. Wunsch, Survey of clustering algorithms. IEEE Transactions on Neural Net-works, Vol. 16, No. 3 (2005), pp.645-678.
Google Scholar
[4]
J.T. Tou, R.C. Gonzalez, Pattern recognition principles. Addison-Wesley, London (1974).
Google Scholar
[5]
J.C. Bezdek, Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York (1981).
Google Scholar
[6]
D.W. Kim, K.Y. Lee, D. Lee, K.H. Lee, A kernel-based subtractive clustering method. Pattern Recognition Letters, Vol. 26, No. 7 (2005), pp.879-891.
DOI: 10.1016/j.patrec.2004.10.001
Google Scholar
[7]
T.M. Martinetz, S.G. Berkovich, K.J. Schulten, Neural-gas network for vector quantization and its application to time-series prediction. IEEE Transactions on Neural Networks, Vol. 4, No. 4, (1993), pp.558-569.
DOI: 10.1109/72.238311
Google Scholar
[8]
F. Camastra, A. Verri, A novel kernel method for clustering. IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 27, No. 5 (2005), pp.801-805.
DOI: 10.1109/tpami.2005.88
Google Scholar
[9]
S. Basu, A. Banerjee, R.J. Mooney, Semi-supervised clustering by seeding. In Proceedings of the Nineteenth International Conference on Machine Learning, (2002), pp.27-34.
Google Scholar
[10]
N. Grira, M. Crucianu, N. Boujemaa, Active semi-supervised fuzzy clustering. Pattern Recognition, Vol. 41, No. 5 (2008), pp.1834-1844.
DOI: 10.1016/j.patcog.2007.10.004
Google Scholar
[11]
S. Basu, A. Banjeree, R.J. Mooney, Active semi-supervised for pairwise constrained clus-tering. In Proceedings of the 2004 SIAM International Conference on Data Mining, (2004), pp.333-344.
DOI: 10.1137/1.9781611972740.31
Google Scholar
[12]
L. Gu, F.C. Sun, Two novel kernel-based semi-supervised clustering methods by seeding. In Proceedings of the 2009 Chinese Conference on Pattern Recognition, (2009).
DOI: 10.1109/ccpr.2009.5344157
Google Scholar
[13]
P. Wolfe, A duality theorem for nonlinear programming. Q. Appl. Math., 19 (1961), pp.239-244.
Google Scholar
[14]
H.W. Kukn, A.W. Tucker, Nonlinear programming. In Proceedings of Second Berkeley Symposium on Mathematical Statistics and Probability, (1951), pp.481-492.
Google Scholar
[15]
M. Bicego, M.A.T. Figueiredo, Soft clustering using weighted one-class support vector machines. Pattern Recognition, Vol. 42, No. 1 (2009), pp.27-32.
DOI: 10.1016/j.patcog.2008.07.004
Google Scholar
[16]
UCI Machine Learning Repository: http: /www. ics. uci. edu/ ~mlearn/MLSummary. html.
Google Scholar