Disturbance Attenuating Control for Cellular Neural Networks with Time-Varying Delays

Article Preview

Abstract:

The problem of disturbance attenuating controller design for delayed cellular neural networks (DCNNs) is considered. Via combining four different states cases in DCNNs and applying Razumikhin function analysis, a feedback control law in the form of linear matrix inequality (LMI) is derived for guaranteeing disturbance attenuation of the closed systems. Finally, a numerical example of DCNNs is given to indicate the effectiveness of the proposed disturbance attenuating control.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1242-1246

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.O. Chua, L. Yang: IEEE Trans. Circuits Syst. I , Vol. 35(1988), p.1257.

Google Scholar

[2] T. Roska , C.W. Wu and L. Chua: IEEE Trans. Circuits Syst. , Vol. 40(1993), p.270.

Google Scholar

[3] P. Thangavel , K. Murali , M. Lakshmanan : Int. J. Bifurcat. Chaos, Vol. 8(1998), p.2481.

Google Scholar

[4] Q. Zhang , X. Wei and J. Xu: Appl. Math Comput., Vol. 162(2005), p.679.

Google Scholar

[5] Q. Zhang , X. Wei , J. Xu: Chaos Soliton. Fract., Vol. 36(2008), p.985.

Google Scholar

[6] J.H. Park: Appl. Math Comput., Vol. 182 (2006), p.1661.

Google Scholar

[7] H.L. He, L. Yan and J.J. Tu: Neural Process. Lett., Vol. 35 (2012) , p.151.

Google Scholar

[8] H.L. He, L. Yan and J.J. Tu: Asian J. Control, 2012, DOI: 10. 1002/asjc. 631.

Google Scholar

[9] J.J. Tu, H.L. He: Neural Compu., Vol. 24(2012), p.217.

Google Scholar

[10] T.S. Hu , Z.L. Lin and B.M. Chen: Automatica Vol. 38(2002), p.351.

Google Scholar

[11] J.K. Hale: Theory of functional differential equations (Springer, New York 1977).

Google Scholar

[12] S. Boyd , L.E. Ghaoui , E. Feron and V. Balakrishnan: Linear matrix inequalities in system and control theory (SIAM, Philadelphia 1994).

DOI: 10.1137/1.9781611970777

Google Scholar

[13] P. Gahinet, A. Nemirovski, A.J. Laub and M. Chilali: LMI Control Toolbox(The Mathworks Inc., Natick 1995).

Google Scholar