[1]
A. Shamir: How to share a secret. Communications of the. ACM, Vol. 22 (11) (1979), pp.612-613.
DOI: 10.1145/359168.359176
Google Scholar
[2]
G. R. Blakley: Safeguarding cryptographic keys. Proc. AFIPS, Vol. 48(1979), pp.313-317.
Google Scholar
[3]
M. Mignotte. How to share a secret. Proc. the Workshop on cryptography, Burg Feuerstein, Springer-Verlag, LNCS, Vol. 149(1983), pp.371-375.
Google Scholar
[4]
C. Asmuth and J. Bloom, in: IEEE Transactions on Information Theory, Vol. 29(1983), pp.208-210.
Google Scholar
[5]
P. Feldman: A practical scheme for non-interactive verifiable secret sharing. Proc. 28th IEEE Symposium on Foundations of Computer Sciences, (1987), pp.427-437.
DOI: 10.1109/sfcs.1987.4
Google Scholar
[6]
T. P. Pedersen: No-interactive and information-theoretic secure verifiable secret sharing. Advances in Cryptology -Crypto'91, Berlin: Springer-Verlag, LNCS, , Vol. 576(1992), pp.129-140.
DOI: 10.1007/3-540-46766-1_9
Google Scholar
[7]
M. Stadler: Publicly verifiable secret sharing. Advances in Cryptology-Eurocrypt'96. Berlin: Springer-Verlag, (1996), pp.191-199.
DOI: 10.1007/3-540-68339-9_17
Google Scholar
[8]
E. Fujisaki, T. Okamoto: A practical and provably secure scheme for publicly verifiable secret sharing and its applications. Advances in Cryptology- Eurocrypt'98. Berlin: Springer-Verlag, LNCS, (1998), pp.32-46.
DOI: 10.1007/bfb0054115
Google Scholar
[9]
B. Schoenmakers: A simple publicly verifiable secret sharing scheme and its applications to electronic voting. Advances in Cryptology-Eurocrypt'99. Berlin: Springer-Verlag, LNCS, (1999): 148-164.
DOI: 10.1007/3-540-48405-1_10
Google Scholar
[10]
D. Chaum, T. Pedersen: Transferred cash grows in size. Advances in Cryptology-EuroCrypt'92. New York: Springer-Verlag, LNCS, (1993), p.390–407.
DOI: 10.1007/3-540-47555-9_32
Google Scholar
[11]
Information on http://eprint.iacr.org/2004/201.ps
Google Scholar
[12]
S. Iftene: Secret sharing schemes with applications in security protocols. Technical report, University Alexandru Ioan Cuza of Iasi, Facullty of Computer Science (2007).
DOI: 10.37789/rochi.2021.1.1.21
Google Scholar
[13]
Q. Li, Z. F. Wang, X. M. Niu, S. H. Sun: A non-interactive modular verifiable secret sharing scheme. International Conference on Communications, Circuits and Systems, Los Alamitos: IEEE Press, (2005), p.84–87.
DOI: 10.1109/icccas.2005.1493367
Google Scholar
[14]
K. Kaya and A. Selçuk: A verifiable secret sharing scheme based on the chinese remainder theorem. Proc 9th International Conference on Cryptology in India. Berlin: Springer-Verlag, LNCS, Vol. 5365(2008), p.414 – 425.
DOI: 10.1007/978-3-540-89754-5_32
Google Scholar
[15]
S. Iftene and S. Ciobaca: Compartmented Threshold RSA Based on the Chinese Remainder Theorem. M Grindei - eprint.iacr.org.
Google Scholar
[16]
Z. J. Cao, L. H. Liu: Boudot's range-bounded commitment scheme revisited. 9th International Conference on Information and Communications Security, Vol. 4861(2007) , pp.230-238.
DOI: 10.1007/978-3-540-77048-0_18
Google Scholar
[17]
K. Kaya, A. Selçuk, in: Information Sciences, Vol. 177(2007) , p.4148–4160.
Google Scholar
[18]
M. Quisquater, P. Bart, J. Vandewalle: On the security of the threshold scheme based on the Chinese remainder theorem, 5th International Workshop on Practice and Theory in Public Key Cryptosystems, Berlin: Springer-Verlag, LNCS, Vol. 2274(2002), pp.199-210.
DOI: 10.1007/3-540-45664-3_14
Google Scholar