Stability Analysis of Computer Virus Model System in Networks

Article Preview

Abstract:

This paper considers stability analysis of a discrete-time computer virus model in networks. The disease-free equilibrium and the disease equilibrium are first derived from the mathematical model. Then the sufficient condition of stability for the disease-free equilibrium is obtained by the first Lyapunov method. And the sufficient conditions of stability for the disease equilibrium are given by disc theorem. Simulation results demonstrate the effectiveness of the stability conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2033-2038

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. K. Mishra, S. K. Pandey, Fuzzy epidemic model for the transmission of worms in computer network, Nonlinear Analysis: Real World Applications, 2010, 11(5): 4335-4341.

DOI: 10.1016/j.nonrwa.2010.05.018

Google Scholar

[2] X. Han, Q. Tan, Dynamical behavior of computer virus on Internet, Applied Mathematics and Computation, 2010, 217(6): 2520- 2526.

DOI: 10.1016/j.amc.2010.07.064

Google Scholar

[3] J. Clark, S. Leblanc, S. Knight, Compromise through USB-based Hardware Trojan Horse device, Future Generation Computer Systems, 2011, 27(5): 555-563.

DOI: 10.1016/j.future.2010.04.008

Google Scholar

[4] J. R.C. Piqueira, A. A. de Vasconcelos, C. E.C.J. Gabriel, V. O. Araujo, Dynamic models for computer viruses, Computers and security, 2008, 27(7-8): 355-359.

DOI: 10.1016/j.cose.2008.07.006

Google Scholar

[5] B. Mishra, N. Jha, Fixed period of temporary immunity after run of anti-malicious software on computer nodes, Applied Mathematics and Computation, 2007, 190(2): 1207-1212.

DOI: 10.1016/j.amc.2007.02.004

Google Scholar

[6] Z. Mukandavirea, C. Chiyaka, W. Garira, G. Musuka, Mathematical analysis of a sex-structured HIV/AIDS model with a discrete time delay. Nonlinear Analysis: Theory, Methods and Applications, 2009, 71(3-4): 1082-1093.

DOI: 10.1016/j.na.2008.11.026

Google Scholar

[7] X. Yan, Y. Zou, Optimal and sub-optimal quarantine and isolation control in SARS epidemics, Mathematical and Computer Modelling, 2008, 47(1-2): 235-245.

DOI: 10.1016/j.mcm.2007.04.003

Google Scholar

[8] Y. Zhou, Z. Ma, A Discrete Epidemic Model for SARS Transmission and Control in China, Mathematical and Computer Modelling, 2004, 40(13): 1491-1506.

DOI: 10.1016/j.mcm.2005.01.007

Google Scholar

[9] C. Chiyaka, J.M. Tchuenche, W. Garira, S. Dube, A mathematical analysis of the effects of control strategieson the transmission dynamics of malaria, Applied Mathematics and Computation, 2008, 195, (2): 641-662.

DOI: 10.1016/j.amc.2007.05.016

Google Scholar

[10] Z. -W. Jia, G. -Y. Tang, Z. Jin, C. Dye, S. J. Vlas, X. -W. Li.D. Feng, L. -Q. Fang, W. -J. Zhao, W. -C. Ca, Modeling the impact of immigration on the epidemiology of tuberculosis, Theoretical Population Biology, 2008, 73(3): 437-448.

DOI: 10.1016/j.tpb.2007.12.007

Google Scholar

[11] J. C. Wierman, D. J. Marchette, Modeling computer virus prevalence with a susceptible- infected - susceptible model with reintroduction, Computational Statistics & Data Analysis, 2004, 45(1): 3-23.

DOI: 10.1016/s0167-9473(03)00113-0

Google Scholar

[12] H. Yuan, G. Chen, Network virus-epidemic model with the point-to-group information propagation, Applied Mathematics and Computation, 2008, 206(1): 357-367.

DOI: 10.1016/j.amc.2008.09.025

Google Scholar

[13] B. K. Mishra, D. K. Saini, SEIRS epidemic model with delay for transmission of malicious objects in computer network. Applied Mathematics and Computation, 2007, 188(2): 1476-1482.

DOI: 10.1016/j.amc.2006.11.012

Google Scholar

[14] H. Yuan, G. Chen, J. Wu, H. Xiong, Towards controlling virus propagation in information systems with point-to-group information sharing, Decision Support Systems, 2009, 48(1): 57- 68.

DOI: 10.1016/j.dss.2009.05.014

Google Scholar

[15] La-di Wang, Jian-quan Li, Global stability of an epidemic model with nonlinear incidence rate and differential infectivity, Applied Mathematics and Computation, 2005, 161(3): 769-778.

DOI: 10.1016/j.amc.2003.12.121

Google Scholar