[1]
B. K. Mishra, S. K. Pandey, Fuzzy epidemic model for the transmission of worms in computer network, Nonlinear Analysis: Real World Applications, 2010, 11(5): 4335-4341.
DOI: 10.1016/j.nonrwa.2010.05.018
Google Scholar
[2]
X. Han, Q. Tan, Dynamical behavior of computer virus on Internet, Applied Mathematics and Computation, 2010, 217(6): 2520- 2526.
DOI: 10.1016/j.amc.2010.07.064
Google Scholar
[3]
J. Clark, S. Leblanc, S. Knight, Compromise through USB-based Hardware Trojan Horse device, Future Generation Computer Systems, 2011, 27(5): 555-563.
DOI: 10.1016/j.future.2010.04.008
Google Scholar
[4]
J. R.C. Piqueira, A. A. de Vasconcelos, C. E.C.J. Gabriel, V. O. Araujo, Dynamic models for computer viruses, Computers and security, 2008, 27(7-8): 355-359.
DOI: 10.1016/j.cose.2008.07.006
Google Scholar
[5]
B. Mishra, N. Jha, Fixed period of temporary immunity after run of anti-malicious software on computer nodes, Applied Mathematics and Computation, 2007, 190(2): 1207-1212.
DOI: 10.1016/j.amc.2007.02.004
Google Scholar
[6]
Z. Mukandavirea, C. Chiyaka, W. Garira, G. Musuka, Mathematical analysis of a sex-structured HIV/AIDS model with a discrete time delay. Nonlinear Analysis: Theory, Methods and Applications, 2009, 71(3-4): 1082-1093.
DOI: 10.1016/j.na.2008.11.026
Google Scholar
[7]
X. Yan, Y. Zou, Optimal and sub-optimal quarantine and isolation control in SARS epidemics, Mathematical and Computer Modelling, 2008, 47(1-2): 235-245.
DOI: 10.1016/j.mcm.2007.04.003
Google Scholar
[8]
Y. Zhou, Z. Ma, A Discrete Epidemic Model for SARS Transmission and Control in China, Mathematical and Computer Modelling, 2004, 40(13): 1491-1506.
DOI: 10.1016/j.mcm.2005.01.007
Google Scholar
[9]
C. Chiyaka, J.M. Tchuenche, W. Garira, S. Dube, A mathematical analysis of the effects of control strategieson the transmission dynamics of malaria, Applied Mathematics and Computation, 2008, 195, (2): 641-662.
DOI: 10.1016/j.amc.2007.05.016
Google Scholar
[10]
Z. -W. Jia, G. -Y. Tang, Z. Jin, C. Dye, S. J. Vlas, X. -W. Li.D. Feng, L. -Q. Fang, W. -J. Zhao, W. -C. Ca, Modeling the impact of immigration on the epidemiology of tuberculosis, Theoretical Population Biology, 2008, 73(3): 437-448.
DOI: 10.1016/j.tpb.2007.12.007
Google Scholar
[11]
J. C. Wierman, D. J. Marchette, Modeling computer virus prevalence with a susceptible- infected - susceptible model with reintroduction, Computational Statistics & Data Analysis, 2004, 45(1): 3-23.
DOI: 10.1016/s0167-9473(03)00113-0
Google Scholar
[12]
H. Yuan, G. Chen, Network virus-epidemic model with the point-to-group information propagation, Applied Mathematics and Computation, 2008, 206(1): 357-367.
DOI: 10.1016/j.amc.2008.09.025
Google Scholar
[13]
B. K. Mishra, D. K. Saini, SEIRS epidemic model with delay for transmission of malicious objects in computer network. Applied Mathematics and Computation, 2007, 188(2): 1476-1482.
DOI: 10.1016/j.amc.2006.11.012
Google Scholar
[14]
H. Yuan, G. Chen, J. Wu, H. Xiong, Towards controlling virus propagation in information systems with point-to-group information sharing, Decision Support Systems, 2009, 48(1): 57- 68.
DOI: 10.1016/j.dss.2009.05.014
Google Scholar
[15]
La-di Wang, Jian-quan Li, Global stability of an epidemic model with nonlinear incidence rate and differential infectivity, Applied Mathematics and Computation, 2005, 161(3): 769-778.
DOI: 10.1016/j.amc.2003.12.121
Google Scholar