[1]
ZENG Yi-lin, XU Hong-bo. Research on Internet hotspot information detection[J]. Journal on ComlTlunications, 2007. 28(12): 141-146.
Google Scholar
[2]
SUN Xue-gang, CHEN Qun-xiu, MA Liang. Study on Topic-Based Web Clustering[J]. Journal of Chinese Information Processing, 2003, ( 3) : 12-16.
Google Scholar
[3]
Zhou Yadong , Sun Qindong, Guan Xiaohong. Internet Popular Topics Extraction of Traffic Content Words Correlation [J]. Journal of Xian Jiaotong University, 2007, 41( 10): 1142-1145, 1150.
Google Scholar
[4]
YE Hui-min, CHENG Wei, DAI Guan-zhang.Design and Implementation of On-Line Hot Topic Discovery Model. Wuhan University Journal of Natural Sciences(WUJNS). 2006. 21-26.
DOI: 10.1007/bf02831697
Google Scholar
[5]
http: /baike. baidu. com/view/1215398. htm.
Google Scholar
[6]
Zhu Hengmin, ZhuWeiwei. Study on Web Topic Online Clustering Approach Base on Single-Pass Algorithm[ J]. XianDai TuShu QingBao JiShu, 2011, 213(12).
Google Scholar
[7]
Gerard Salton, Christopher Buckley. Term-Weighting Approaches in Automatic Text Retrieval. Information Processing and Management. 1988. 5(24): 513-523.
DOI: 10.1016/0306-4573(88)90021-0
Google Scholar
[8]
Li Baoli , YU Shiwen. Research on Topic Detection and Tracking[J]. Computer Engineering and Applications. 2003, 39(17): 7-10.
Google Scholar
[9]
LuoYaping, WangCong, Zhou Yanquan. Study on Hot Topic Discovery Model Based on Attention Degree [A]. In: Proc. Of the 7th International Conferences on Chinese Information Processing [C]. WuHan: Chinese Information Processing Society of China, 2007: 402-408.
Google Scholar