[1]
British Petroleum: BP World Energy Outlook 2030 (2011).
Google Scholar
[2]
F.G. Braun, E. Hooper, P. Zloczysti, Holding a candle to innovation in concentrating solar power technologies: A study drawing on patent data, Energy Policy. 39 (2011) 2441-2456.
DOI: 10.1016/j.enpol.2011.02.008
Google Scholar
[3]
S. Nehare, Solar energy usage in world, Clancy Global Newsletter: Consulting Electrical Engineers Association of Maharashtra (2012).
Google Scholar
[4]
F. Nasri, C. Ali, H.B. Bacha, A review of solar thermal electricity production, International Journal of Research and Reviews in Applied Sciences. 8 (2011) 349-355.
Google Scholar
[5]
D.Y. Goswami, Solar thermal power technology: present status and ideas for the future, Energy Sources. 20 (2007) 137-145.
DOI: 10.1080/00908319808970052
Google Scholar
[6]
P. Schwarzbozl, R. Buck, C. Sugarmen, A. Ring, Ma J.M. Crespo, P. Altwegg, J. Enrile, olar gas turbine systems: Design, cost and perspectives, Solar Energy. 80 (2006) 1231-1240.
DOI: 10.1016/j.solener.2005.09.007
Google Scholar
[7]
M.J. Khan, M.T. Iqbal, Pre-feasibility study of stand-alone hybrid energy systems for applications in Newfoundland, Renewable Energy. 30 (2005) 835-854.
DOI: 10.1016/j.renene.2004.09.001
Google Scholar
[8]
M. Kalantar, S.M. Mousavi G, Dynamic behavior of a stand-alone hybrid power generation system of wind turbine, microturbine, solar array and battery storage, Applied Energy. 87 (2010).
DOI: 10.1016/j.apenergy.2010.02.019
Google Scholar
[9]
N.H. Afgan, M.G. Carvalho, Sustainability assessment of a hybrid energy system, Energy Policy. 36 (2008) 2903-2910.
DOI: 10.1016/j.enpol.2008.03.040
Google Scholar
[10]
J.F. Manwell, Hybrid energy systems, Encyclopedia of Energy. 3 (2004) 215-230.
Google Scholar
[11]
L.W. Florschuetz, Extension of the Hottel-Whillier model to the analysis of combined photovoltaic/thermal flat plate collectors, Solar Energy. 22 (1979) 361-366.
DOI: 10.1016/0038-092x(79)90190-7
Google Scholar
[12]
L.W. Florschuetz, On heat rejection from terrestrial solar cell arrays with sunlight concentration, in: 11th IEEE Photovoltaic Specialists Conference. NY (1975) 318-326.
Google Scholar
[13]
E. C. Kern, M.C. Russel , Combined photovoltaic and thermal hybrid collector systems, 13th IEEE Photovoltaic Specialists Conference. Washington, D. C (1978).
Google Scholar
[14]
M. Wolf, Performance analysis of combined heating and photovoltaic power systems for residences, Energy Conversion. 16 (1976) 79-90.
DOI: 10.1016/0013-7480(76)90018-8
Google Scholar
[15]
B. Lalović, A hybrid amorphous silicon photovoltaic and thermal solar collector, Solar Cells. 19 (1986) 131-138.
DOI: 10.1016/0379-6787(86)90038-4
Google Scholar
[16]
Y. Tripanagnostopoulos, P. Yianoulis, D. Patrikios, Hybrid PV-TC solar systems, Renewable Energy. 8 (1996) 505-508.
DOI: 10.1016/0960-1481(96)88908-7
Google Scholar
[17]
B.J. Huang, T.H. Lin, W. C. Hung, F. S. Sun, Performance evaluation of solar photovoltaic/thermal systems, Solar Energy. 70 (2001) 443-448.
DOI: 10.1016/s0038-092x(00)00153-5
Google Scholar
[18]
Soteris A. Kalogirou, Use of TRNSYS for modelling and simulation of a hybrid pv-thermal solar system for Cyprus, Renewable Energy. 23 (2001) 247-260.
DOI: 10.1016/s0960-1481(00)00176-2
Google Scholar
[19]
Y. Tripanagnostopoulos, M. Souliotis, R. Battisti, A. Corrado, Performance, cost and life-cycle assessment study of hybrid PVT/AIR solar systems, Progress in Photovoltaics: Research and Applications. 14 (2001) 65-76.
DOI: 10.1002/pip.634
Google Scholar
[20]
J.I. Rosell, X. Vallverdu, M.A. Lechon, M. Ibanez, Design and simulation of a low concentrating photovoltaic/thermal system, Energy Conversion and Management. 46 (2005).
Google Scholar
[21]
E. Erdil, M. Ilkan, F. Egelioglu, An experimental study on energy generation with a photovoltaic (PV) - solar thermal hybrid system, Energy. 33 (2008) 1241-1245.
DOI: 10.1016/j.energy.2008.03.005
Google Scholar
[22]
S.L. Jiang, P. Hu, S.P. Mo, Z.S. Chen, Optical modeling for a two-stage parabolic trough concentrating photovoltaic/thermal system using spectral beam splitting technology, Solar Energy Materials & Solar Cells. 94 (2010) 1686-1696.
DOI: 10.1016/j.solmat.2010.05.029
Google Scholar
[23]
G. Kosmadakis, D. Manolakos, G. Papadakis, Simulation and economic analysis of a CPV/thermal system coupled with an organic Rankine cycle for increased power generation, Solar Energy. 85 (2010) 308-324.
DOI: 10.1016/j.solener.2010.11.019
Google Scholar
[24]
L.D. Jaffe, Availability of solar and wind generating units, IEEE Transactions on Power Apparatus and Systems. PAS-104 (1985) 1012-1016.
DOI: 10.1109/tpas.1985.323450
Google Scholar
[25]
A. Hoque, Q. Ahsan, Wind and solar generating units: potential candidates for a generation mix of an isolated area, Solar Energy. 55 (1995) 395-404.
DOI: 10.1016/0038-092x(95)00056-w
Google Scholar
[26]
S.A. Farghal, M.R. Abdel Aziz, Generation expansion planning including the renewable energy sources, IEEE Transactions on Power Systems. 3 (1988) 816-822.
DOI: 10.1109/59.14527
Google Scholar
[27]
E.S. Gavanidou, A.G. Bakirtzis, Design of a stand alone system with renewable energy sources using trade off methods, IEEE Transactions on Energy Conversion. 7 (1992) 42-48.
DOI: 10.1109/60.124540
Google Scholar
[28]
B.S. Borowy, Z.M. Salameh, Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system, IEEE Transactions on Energy Conversion. 11 (1996) 367-375.
DOI: 10.1109/60.507648
Google Scholar
[29]
D. Lew,Micro-hybrids in rural China: Rural electrification with wind/PV hybrids,Refocus. 2 (2001) 30-33.
DOI: 10.1016/s1471-0846(01)80020-2
Google Scholar
[30]
M.A. Elhadidy and S.M. Shaahid, Feasibility of hybrid (wind + solar) power systems for Dhahran, SaudiArabia, Renewable Energy. 16 (1999) 970-976.
DOI: 10.1016/s0960-1481(98)00344-9
Google Scholar
[31]
M.A. Elhadidy, Performance evaluation of hybrid (wind/solar/diesel) power systems, Renewable Energy. 26 (2002) 401-413.
DOI: 10.1016/s0960-1481(01)00139-2
Google Scholar
[32]
A.N. Celik,The system performance of autonomous photovoltaic - wind hybrid energy system using synthetically generated weather data, Renewable Energy. 27 (2002) 107-121.
DOI: 10.1016/s0960-1481(01)00168-9
Google Scholar
[33]
O.C. Onar, M. Uzunoglu, M.S. Alam, Modeling, control and simulation of an autonomous wind turbine/photovoltaic/fuel cell/ultra-capacitor hybrid power system, Journal of Power Sources. 185(1996) 1273-1283.
DOI: 10.1016/j.jpowsour.2008.08.083
Google Scholar
[34]
F. Valenciaga, Pablo F. Puleston, Pedro E. Battaiotto, Power control of a solar/wind generation system without wind measurement: a passivity/sliding mode approach, IEEE Transactions on Energy Conversion. 18 (2003) 501-507.
DOI: 10.1109/tec.2003.816602
Google Scholar
[35]
I.A. Adejumobi, A.A. Esan, A. B. Okunuga, Discovering potential sites for Small Hydro Power (SHP) in Nigeria, Journal of Advanced Material Research. 18-19 (2007) 93-97.
DOI: 10.4028/www.scientific.net/amr.18-19.93
Google Scholar
[36]
W. Zhou, C.Z. Lou, Z.S. Li, L. Lu, H.X. Yang, Current status of research on optimum sizing of stand-alone hybrid solar - wind power generation systems, Applied Energy. 87 (2010) 380-389.
DOI: 10.1016/j.apenergy.2009.08.012
Google Scholar
[37]
H.X. Yang, W. Zhou, C.Z. Lou, Optimal design and techno-economic analysis of a hybrid solar - wind power generation system, Applied Energy. 86 (2009) 163-169.
DOI: 10.1016/j.apenergy.2008.03.008
Google Scholar
[38]
H.X. Yang, L. Lu, J. Burnett, Weather data and probability analysis of hybrid photovoltaic–wind power generation in Hong Kong, Renewable Energy. 28 (2003) 1813-1824.
DOI: 10.1016/s0960-1481(03)00015-6
Google Scholar
[39]
W. Zhou, H.X. Yang, Z.H. Fang, A novel model for photovoltaic array performance prediction, Applied Energy. 84 (2007) 1187-1198.
DOI: 10.1016/j.apenergy.2007.04.006
Google Scholar
[40]
L.Q. Liu, Z.X. Wang, The development and application practice of wind–solar energy hybrid generation systems in China, Renewable and Sustainable Energy Reviews. 13 (2009) 1503-1512.
DOI: 10.1016/j.rser.2008.09.021
Google Scholar
[41]
L. Ren, Y. Tang, J. Shi, J. Dou, S. Zhou, T. Jin, Techno-economic evaluation of hybrid energy storage technologies for a solar–wind generation system, Physica C: Superconductivity. ( in press).
DOI: 10.1016/j.physc.2012.02.048
Google Scholar
[42]
A.N. Celik, Optimisation, techno-economic analysis of autonomous photovoltaic–wind hybrid energy systems in comparison to single photovoltaic and wind systems, Energy Conversion and Management. 43 (2002) 2453-2468.
DOI: 10.1016/s0196-8904(01)00198-4
Google Scholar
[43]
A. Shipley, A. Hampson, B. Hedman, P. Garland, P. Bautista, Combined Heat & Power-Effective Energy Solutions for a Sustainable Future, Oak Ridge National Laboratory, (2008).
DOI: 10.2172/1218492
Google Scholar
[44]
D.L. Zeng, Y. Ao, X.M. Zhang, Engineering Thermodynamics, Higher Education Press, (2002).
Google Scholar
[45]
R. Kehlhofer, B. Rukes, F. Hannemann, F. Stirnimann, Combined-Cycle Gas & Steam Turbine Power Plants, 3rd ed., PennWell Corp, USA, (2009).
Google Scholar
[46]
K. Koai, N. Liam, H. Yeh, Performance analyses of a solar-powered/fuel-assisted Rankine cycle with a novel 10 hp turbine, Solar Energy. 32 (1984) 753-764.
DOI: 10.1016/0038-092x(84)90249-4
Google Scholar
[47]
C. Micheli, Considerations on a combined and hybrid solar/fossil fuel cycle, Electric Power Systems Research. 3 (1980) 53-64.
DOI: 10.1016/0378-7796(80)90022-x
Google Scholar
[48]
C.F. McDonald, A hybrid solar closed-cycle gas turbine combined heat and power plant concept to meet the continuous total energy needs of a small community, Journal of Heat Recovery Systems. 6 (1986) 399-419.
DOI: 10.1016/0198-7593(86)90227-4
Google Scholar
[49]
Y. Allani, D. Favrat, M.R. von Spakovsky, CO2 mitigation through the use of hybrid solar-combined cycles, Energy Conversion and Management. 38 (1997) 661-667.
DOI: 10.1016/s0196-8904(97)00012-5
Google Scholar
[50]
M. Kane, D. Favrat, K. Ziegler, Y. Allani, Thermoeconomic analysis of advanced solar-fossil combined power plants, International Journal of Applied Thermodynamics. 3 (2000) 191-198.
Google Scholar
[51]
P. Gandhidasan, Thermodynamic analysis of a closed-cycle, solar gas-turbine plant, Energy Conversion and Management. 34 (1993) 657-661.
DOI: 10.1016/0196-8904(93)90100-o
Google Scholar
[52]
M. Lenzen, Greenhouse gas analysis of solar-thermal electricity generation, Solar Energy. 65 (1999) 353-368.
DOI: 10.1016/s0038-092x(99)00005-5
Google Scholar
[53]
S. Giuliano, R. Buck, S. Eguiguren, Analysis of solar-thermal power plants with thermal energy storage and solar-hybrid operation strategy, Journal of Solar Energy Engineering. (2011).
DOI: 10.1115/1.4004246
Google Scholar
[54]
Y. Tamaura YW, T. Yoshida, M. Tsuji, The coal/Fe3O4 system for mixing of solar and fossil energies, Energy. 22 (1997) 337-342.
DOI: 10.1016/s0360-5442(96)00111-9
Google Scholar
[55]
M. Nguyen, S.B. Riffat, D. Whitman, Solar/gas driven absorption heat-pump systems. Applied Thermal Engineering. 16 (1996) 347-356.
DOI: 10.1016/1359-4311(95)00085-2
Google Scholar
[56]
J. Matsunami, S. Yoshida, Y. Oku, O. Yokota, Y. Tamaura, M. Kitamura, Coal gasification by CO2 gas bubbling in molten salt for solar/fossil energy hybridization, Solar Energy. 68 (2000).
DOI: 10.1016/s0038-092x(99)00074-2
Google Scholar
[57]
P.S. Pak, T. Hatikawa, Y. Suzuki, A hybrid power generation system utilizing thermal energy with CO2 recovery based on oxygen combustion method METHOD, Energy Conversion and Management . 36 (1995) 823-826.
DOI: 10.1016/0196-8904(95)00130-6
Google Scholar
[58]
A. Kribus, R. Zzibel, D. Carey, A. Segal, J. Karni, A solar -driven combined cycle power plant , Solar Energy. 62 (1998) 121-129.
DOI: 10.1016/s0038-092x(97)00107-2
Google Scholar
[59]
M. Kane, D. Larrain, D. Favrat, Y. Allani, Small hybrid solar power system, Energy. 28 (2003).
Google Scholar
[60]
S.B. Riffat, X. Zhao, A novel hybrid heat pipe solar collector/CHP system — Part 1: System design and construction, Renewable Energy. 29 (2004) 2217-2233.
DOI: 10.1016/j.renene.2004.03.017
Google Scholar
[61]
W. Yagoub, P. Doherty, S.B. Riffat, Solar energy-gas driven micro-CHP system for an office building, Applied Thermal Engineering. 26 (2006) 1604-1610.
DOI: 10.1016/j.applthermaleng.2005.11.021
Google Scholar
[62]
J. Dersch, M. Geyer, U. Herrmann, Scott A. Jones, B. Kelly, R. Kistner, W. Ortmanns, R. Pitz-Paal, H. Price, Trough integration into power plants— a study on the performance and economy of integrated solar combined cycle system, Energy. 29 (2004).
DOI: 10.1016/s0360-5442(03)00199-3
Google Scholar
[63]
P. Heller, M. Pfander, T. Denk, F. Tellez, A. Valverde, J. Fernandez, A. Ring, Test and evaluation of a solar powered gas turbine system, Solar Energy. 80 (2006) 1225-1230.
DOI: 10.1016/j.solener.2005.04.020
Google Scholar
[64]
U. Fisher, C. Sugarmen, A. Ring, J. Sinai, Gas turbine Solarization, - modifications for solar/fuel hybrid operation, Journal of Solar Energy Engineering. 126 (2004) 872-878.
DOI: 10.1115/1.1763602
Google Scholar
[65]
H. Alrobaei, Novel integrated gas turbine solar cogeneration power plant, Desalination. 220 (2008) 574-587.
DOI: 10.1016/j.desal.2007.01.058
Google Scholar
[66]
H. Zhai, Y.J. Dai, J.Y. Wu, R.Z. Wang, Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas, Applied Energy. 86 (2009) 1395-1404.
DOI: 10.1016/j.apenergy.2008.11.020
Google Scholar
[67]
A. Baghernejad, M. Yaghoubi, Exergy analysis of an integrated solar combined cycle system, Renewable Energy. 35 (2010) 2157-2164.
DOI: 10.1016/j.renene.2010.02.021
Google Scholar
[68]
R. Hosseinia, M. Soltani, G. Valizadeh, Technical and economic assessment of the integrated solar combined cycle power plants in Iran, Renewable Energy. 30 (2005) 1541-1555.
DOI: 10.1016/j.renene.2004.11.005
Google Scholar
[69]
H. Nezammahalleh, F. Farhadi, M. Tanhaemami, Conceptual design and techno-economic assessment of integrated solar combined cycle system with DSG technology, Solar Energy. 84 (2010) 1696-1705.
DOI: 10.1016/j.solener.2010.05.007
Google Scholar
[70]
A. Baghernejad, M. Yaghoubi, Exergoeconomic analysis and optimization of an Integrated Solar Combined Cycle System (ISCCS) using genetic algorithm, Energy Conversion and Management. 52 (2011) 2193-2203.
DOI: 10.1016/j.enconman.2010.12.019
Google Scholar