A Review on Hybrid Solar Power System Technology

Article Preview

Abstract:

Solar energy utilization has met some complicated problems in recent years, like energy storage, solar thermal power generation dispatchability and grid connection etc. The concept of hybrid solar power systems proposed in early researches has extended the conditions of exploiting solar power generation technology,this paper reviews hybrid solar power system technologies in the past 40 years. According to different complementary energy resources, hybrid solar/renewable energy and solar/conventional energy systems have been discussed in this paper. Particularly, this article presents the thermal and economic performances of Integrated Solar Combined Cycle System (ISCCS).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

554-562

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] British Petroleum: BP World Energy Outlook 2030 (2011).

Google Scholar

[2] F.G. Braun, E. Hooper, P. Zloczysti, Holding a candle to innovation in concentrating solar power technologies: A study drawing on patent data, Energy Policy. 39 (2011) 2441-2456.

DOI: 10.1016/j.enpol.2011.02.008

Google Scholar

[3] S. Nehare, Solar energy usage in world, Clancy Global Newsletter: Consulting Electrical Engineers Association of Maharashtra (2012).

Google Scholar

[4] F. Nasri, C. Ali, H.B. Bacha, A review of solar thermal electricity production, International Journal of Research and Reviews in Applied Sciences. 8 (2011) 349-355.

Google Scholar

[5] D.Y. Goswami, Solar thermal power technology: present status and ideas for the future, Energy Sources. 20 (2007) 137-145.

DOI: 10.1080/00908319808970052

Google Scholar

[6] P. Schwarzbozl, R. Buck, C. Sugarmen, A. Ring, Ma J.M. Crespo, P. Altwegg, J. Enrile, olar gas turbine systems: Design, cost and perspectives, Solar Energy. 80 (2006) 1231-1240.

DOI: 10.1016/j.solener.2005.09.007

Google Scholar

[7] M.J. Khan, M.T. Iqbal, Pre-feasibility study of stand-alone hybrid energy systems for applications in Newfoundland, Renewable Energy. 30 (2005) 835-854.

DOI: 10.1016/j.renene.2004.09.001

Google Scholar

[8] M. Kalantar, S.M. Mousavi G, Dynamic behavior of a stand-alone hybrid power generation system of wind turbine, microturbine, solar array and battery storage, Applied Energy. 87 (2010).

DOI: 10.1016/j.apenergy.2010.02.019

Google Scholar

[9] N.H. Afgan, M.G. Carvalho, Sustainability assessment of a hybrid energy system, Energy Policy. 36 (2008) 2903-2910.

DOI: 10.1016/j.enpol.2008.03.040

Google Scholar

[10] J.F. Manwell, Hybrid energy systems, Encyclopedia of Energy. 3 (2004) 215-230.

Google Scholar

[11] L.W. Florschuetz, Extension of the Hottel-Whillier model to the analysis of combined photovoltaic/thermal flat plate collectors, Solar Energy. 22 (1979) 361-366.

DOI: 10.1016/0038-092x(79)90190-7

Google Scholar

[12] L.W. Florschuetz, On heat rejection from terrestrial solar cell arrays with sunlight concentration, in: 11th IEEE Photovoltaic Specialists Conference. NY (1975) 318-326.

Google Scholar

[13] E. C. Kern, M.C. Russel , Combined photovoltaic and thermal hybrid collector systems, 13th IEEE Photovoltaic Specialists Conference. Washington, D. C (1978).

Google Scholar

[14] M. Wolf, Performance analysis of combined heating and photovoltaic power systems for residences, Energy Conversion. 16 (1976) 79-90.

DOI: 10.1016/0013-7480(76)90018-8

Google Scholar

[15] B. Lalović, A hybrid amorphous silicon photovoltaic and thermal solar collector, Solar Cells. 19 (1986) 131-138.

DOI: 10.1016/0379-6787(86)90038-4

Google Scholar

[16] Y. Tripanagnostopoulos, P. Yianoulis, D. Patrikios, Hybrid PV-TC solar systems, Renewable Energy. 8 (1996) 505-508.

DOI: 10.1016/0960-1481(96)88908-7

Google Scholar

[17] B.J. Huang, T.H. Lin, W. C. Hung, F. S. Sun, Performance evaluation of solar photovoltaic/thermal systems, Solar Energy. 70 (2001) 443-448.

DOI: 10.1016/s0038-092x(00)00153-5

Google Scholar

[18] Soteris A. Kalogirou, Use of TRNSYS for modelling and simulation of a hybrid pv-thermal solar system for Cyprus, Renewable Energy. 23 (2001) 247-260.

DOI: 10.1016/s0960-1481(00)00176-2

Google Scholar

[19] Y. Tripanagnostopoulos, M. Souliotis, R. Battisti, A. Corrado, Performance, cost and life-cycle assessment study of hybrid PVT/AIR solar systems, Progress in Photovoltaics: Research and Applications. 14 (2001) 65-76.

DOI: 10.1002/pip.634

Google Scholar

[20] J.I. Rosell, X. Vallverdu, M.A. Lechon, M. Ibanez, Design and simulation of a low concentrating photovoltaic/thermal system, Energy Conversion and Management. 46 (2005).

Google Scholar

[21] E. Erdil, M. Ilkan, F. Egelioglu, An experimental study on energy generation with a photovoltaic (PV) - solar thermal hybrid system, Energy. 33 (2008) 1241-1245.

DOI: 10.1016/j.energy.2008.03.005

Google Scholar

[22] S.L. Jiang, P. Hu, S.P. Mo, Z.S. Chen, Optical modeling for a two-stage parabolic trough concentrating photovoltaic/thermal system using spectral beam splitting technology, Solar Energy Materials & Solar Cells. 94 (2010) 1686-1696.

DOI: 10.1016/j.solmat.2010.05.029

Google Scholar

[23] G. Kosmadakis, D. Manolakos, G. Papadakis, Simulation and economic analysis of a CPV/thermal system coupled with an organic Rankine cycle for increased power generation, Solar Energy. 85 (2010) 308-324.

DOI: 10.1016/j.solener.2010.11.019

Google Scholar

[24] L.D. Jaffe, Availability of solar and wind generating units, IEEE Transactions on Power Apparatus and Systems. PAS-104 (1985) 1012-1016.

DOI: 10.1109/tpas.1985.323450

Google Scholar

[25] A. Hoque, Q. Ahsan, Wind and solar generating units: potential candidates for a generation mix of an isolated area, Solar Energy. 55 (1995) 395-404.

DOI: 10.1016/0038-092x(95)00056-w

Google Scholar

[26] S.A. Farghal, M.R. Abdel Aziz, Generation expansion planning including the renewable energy sources, IEEE Transactions on Power Systems. 3 (1988) 816-822.

DOI: 10.1109/59.14527

Google Scholar

[27] E.S. Gavanidou, A.G. Bakirtzis, Design of a stand alone system with renewable energy sources using trade off methods, IEEE Transactions on Energy Conversion. 7 (1992) 42-48.

DOI: 10.1109/60.124540

Google Scholar

[28] B.S. Borowy, Z.M. Salameh, Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system, IEEE Transactions on Energy Conversion. 11 (1996) 367-375.

DOI: 10.1109/60.507648

Google Scholar

[29] D. Lew,Micro-hybrids in rural China: Rural electrification with wind/PV hybrids,Refocus. 2 (2001) 30-33.

DOI: 10.1016/s1471-0846(01)80020-2

Google Scholar

[30] M.A. Elhadidy and S.M. Shaahid, Feasibility of hybrid (wind + solar) power systems for Dhahran, SaudiArabia, Renewable Energy. 16 (1999) 970-976.

DOI: 10.1016/s0960-1481(98)00344-9

Google Scholar

[31] M.A. Elhadidy, Performance evaluation of hybrid (wind/solar/diesel) power systems, Renewable Energy. 26 (2002) 401-413.

DOI: 10.1016/s0960-1481(01)00139-2

Google Scholar

[32] A.N. Celik,The system performance of autonomous photovoltaic - wind hybrid energy system using synthetically generated weather data, Renewable Energy. 27 (2002) 107-121.

DOI: 10.1016/s0960-1481(01)00168-9

Google Scholar

[33] O.C. Onar, M. Uzunoglu, M.S. Alam, Modeling, control and simulation of an autonomous wind turbine/photovoltaic/fuel cell/ultra-capacitor hybrid power system, Journal of Power Sources. 185(1996) 1273-1283.

DOI: 10.1016/j.jpowsour.2008.08.083

Google Scholar

[34] F. Valenciaga, Pablo F. Puleston, Pedro E. Battaiotto, Power control of a solar/wind generation system without wind measurement: a passivity/sliding mode approach, IEEE Transactions on Energy Conversion. 18 (2003) 501-507.

DOI: 10.1109/tec.2003.816602

Google Scholar

[35] I.A. Adejumobi, A.A. Esan, A. B. Okunuga, Discovering potential sites for Small Hydro Power (SHP) in Nigeria, Journal of Advanced Material Research. 18-19 (2007) 93-97.

DOI: 10.4028/www.scientific.net/amr.18-19.93

Google Scholar

[36] W. Zhou, C.Z. Lou, Z.S. Li, L. Lu, H.X. Yang, Current status of research on optimum sizing of stand-alone hybrid solar - wind power generation systems, Applied Energy. 87 (2010) 380-389.

DOI: 10.1016/j.apenergy.2009.08.012

Google Scholar

[37] H.X. Yang, W. Zhou, C.Z. Lou, Optimal design and techno-economic analysis of a hybrid solar - wind power generation system, Applied Energy. 86 (2009) 163-169.

DOI: 10.1016/j.apenergy.2008.03.008

Google Scholar

[38] H.X. Yang, L. Lu, J. Burnett, Weather data and probability analysis of hybrid photovoltaic–wind power generation in Hong Kong, Renewable Energy. 28 (2003) 1813-1824.

DOI: 10.1016/s0960-1481(03)00015-6

Google Scholar

[39] W. Zhou, H.X. Yang, Z.H. Fang, A novel model for photovoltaic array performance prediction, Applied Energy. 84 (2007) 1187-1198.

DOI: 10.1016/j.apenergy.2007.04.006

Google Scholar

[40] L.Q. Liu, Z.X. Wang, The development and application practice of wind–solar energy hybrid generation systems in China, Renewable and Sustainable Energy Reviews. 13 (2009) 1503-1512.

DOI: 10.1016/j.rser.2008.09.021

Google Scholar

[41] L. Ren, Y. Tang, J. Shi, J. Dou, S. Zhou, T. Jin, Techno-economic evaluation of hybrid energy storage technologies for a solar–wind generation system, Physica C: Superconductivity. ( in press).

DOI: 10.1016/j.physc.2012.02.048

Google Scholar

[42] A.N. Celik, Optimisation, techno-economic analysis of autonomous photovoltaic–wind hybrid energy systems in comparison to single photovoltaic and wind systems, Energy Conversion and Management. 43 (2002) 2453-2468.

DOI: 10.1016/s0196-8904(01)00198-4

Google Scholar

[43] A. Shipley, A. Hampson, B. Hedman, P. Garland, P. Bautista, Combined Heat & Power-Effective Energy Solutions for a Sustainable Future, Oak Ridge National Laboratory, (2008).

DOI: 10.2172/1218492

Google Scholar

[44] D.L. Zeng, Y. Ao, X.M. Zhang, Engineering Thermodynamics, Higher Education Press, (2002).

Google Scholar

[45] R. Kehlhofer, B. Rukes, F. Hannemann, F. Stirnimann, Combined-Cycle Gas & Steam Turbine Power Plants, 3rd ed., PennWell Corp, USA, (2009).

Google Scholar

[46] K. Koai, N. Liam, H. Yeh, Performance analyses of a solar-powered/fuel-assisted Rankine cycle with a novel 10 hp turbine, Solar Energy. 32 (1984) 753-764.

DOI: 10.1016/0038-092x(84)90249-4

Google Scholar

[47] C. Micheli, Considerations on a combined and hybrid solar/fossil fuel cycle, Electric Power Systems Research. 3 (1980) 53-64.

DOI: 10.1016/0378-7796(80)90022-x

Google Scholar

[48] C.F. McDonald, A hybrid solar closed-cycle gas turbine combined heat and power plant concept to meet the continuous total energy needs of a small community, Journal of Heat Recovery Systems. 6 (1986) 399-419.

DOI: 10.1016/0198-7593(86)90227-4

Google Scholar

[49] Y. Allani, D. Favrat, M.R. von Spakovsky, CO2 mitigation through the use of hybrid solar-combined cycles, Energy Conversion and Management. 38 (1997) 661-667.

DOI: 10.1016/s0196-8904(97)00012-5

Google Scholar

[50] M. Kane, D. Favrat, K. Ziegler, Y. Allani, Thermoeconomic analysis of advanced solar-fossil combined power plants, International Journal of Applied Thermodynamics. 3 (2000) 191-198.

Google Scholar

[51] P. Gandhidasan, Thermodynamic analysis of a closed-cycle, solar gas-turbine plant, Energy Conversion and Management. 34 (1993) 657-661.

DOI: 10.1016/0196-8904(93)90100-o

Google Scholar

[52] M. Lenzen, Greenhouse gas analysis of solar-thermal electricity generation, Solar Energy. 65 (1999) 353-368.

DOI: 10.1016/s0038-092x(99)00005-5

Google Scholar

[53] S. Giuliano, R. Buck, S. Eguiguren, Analysis of solar-thermal power plants with thermal energy storage and solar-hybrid operation strategy, Journal of Solar Energy Engineering. (2011).

DOI: 10.1115/1.4004246

Google Scholar

[54] Y. Tamaura YW, T. Yoshida, M. Tsuji, The coal/Fe3O4 system for mixing of solar and fossil energies, Energy. 22 (1997) 337-342.

DOI: 10.1016/s0360-5442(96)00111-9

Google Scholar

[55] M. Nguyen, S.B. Riffat, D. Whitman, Solar/gas driven absorption heat-pump systems. Applied Thermal Engineering. 16 (1996) 347-356.

DOI: 10.1016/1359-4311(95)00085-2

Google Scholar

[56] J. Matsunami, S. Yoshida, Y. Oku, O. Yokota, Y. Tamaura, M. Kitamura, Coal gasification by CO2 gas bubbling in molten salt for solar/fossil energy hybridization, Solar Energy. 68 (2000).

DOI: 10.1016/s0038-092x(99)00074-2

Google Scholar

[57] P.S. Pak, T. Hatikawa, Y. Suzuki, A hybrid power generation system utilizing thermal energy with CO2 recovery based on oxygen combustion method METHOD, Energy Conversion and Management . 36 (1995) 823-826.

DOI: 10.1016/0196-8904(95)00130-6

Google Scholar

[58] A. Kribus, R. Zzibel, D. Carey, A. Segal, J. Karni, A solar -driven combined cycle power plant , Solar Energy. 62 (1998) 121-129.

DOI: 10.1016/s0038-092x(97)00107-2

Google Scholar

[59] M. Kane, D. Larrain, D. Favrat, Y. Allani, Small hybrid solar power system, Energy. 28 (2003).

Google Scholar

[60] S.B. Riffat, X. Zhao, A novel hybrid heat pipe solar collector/CHP system — Part 1: System design and construction, Renewable Energy. 29 (2004) 2217-2233.

DOI: 10.1016/j.renene.2004.03.017

Google Scholar

[61] W. Yagoub, P. Doherty, S.B. Riffat, Solar energy-gas driven micro-CHP system for an office building, Applied Thermal Engineering. 26 (2006) 1604-1610.

DOI: 10.1016/j.applthermaleng.2005.11.021

Google Scholar

[62] J. Dersch, M. Geyer, U. Herrmann, Scott A. Jones, B. Kelly, R. Kistner, W. Ortmanns, R. Pitz-Paal, H. Price, Trough integration into power plants— a study on the performance and economy of integrated solar combined cycle system, Energy. 29 (2004).

DOI: 10.1016/s0360-5442(03)00199-3

Google Scholar

[63] P. Heller, M. Pfander, T. Denk, F. Tellez, A. Valverde, J. Fernandez, A. Ring, Test and evaluation of a solar powered gas turbine system, Solar Energy. 80 (2006) 1225-1230.

DOI: 10.1016/j.solener.2005.04.020

Google Scholar

[64] U. Fisher, C. Sugarmen, A. Ring, J. Sinai, Gas turbine Solarization, - modifications for solar/fuel hybrid operation, Journal of Solar Energy Engineering. 126 (2004) 872-878.

DOI: 10.1115/1.1763602

Google Scholar

[65] H. Alrobaei, Novel integrated gas turbine solar cogeneration power plant, Desalination. 220 (2008) 574-587.

DOI: 10.1016/j.desal.2007.01.058

Google Scholar

[66] H. Zhai, Y.J. Dai, J.Y. Wu, R.Z. Wang, Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas, Applied Energy. 86 (2009) 1395-1404.

DOI: 10.1016/j.apenergy.2008.11.020

Google Scholar

[67] A. Baghernejad, M. Yaghoubi, Exergy analysis of an integrated solar combined cycle system, Renewable Energy. 35 (2010) 2157-2164.

DOI: 10.1016/j.renene.2010.02.021

Google Scholar

[68] R. Hosseinia, M. Soltani, G. Valizadeh, Technical and economic assessment of the integrated solar combined cycle power plants in Iran, Renewable Energy. 30 (2005) 1541-1555.

DOI: 10.1016/j.renene.2004.11.005

Google Scholar

[69] H. Nezammahalleh, F. Farhadi, M. Tanhaemami, Conceptual design and techno-economic assessment of integrated solar combined cycle system with DSG technology, Solar Energy. 84 (2010) 1696-1705.

DOI: 10.1016/j.solener.2010.05.007

Google Scholar

[70] A. Baghernejad, M. Yaghoubi, Exergoeconomic analysis and optimization of an Integrated Solar Combined Cycle System (ISCCS) using genetic algorithm, Energy Conversion and Management. 52 (2011) 2193-2203.

DOI: 10.1016/j.enconman.2010.12.019

Google Scholar