Tracking Contrast Agents from Ultrasound Image Using Texture Preserving Optical Flow Estimation

Article Preview

Abstract:

In this paper, we proposed a novel texture preserving optical flow technique to estimate the motion patterns of contrast agent on the ultrasound image. The proposed method estimated the motion fields based on three major steps. Firstly, the proposed method recomposed the original image based on the weighted structure-texture decomposition. Secondly, we applied a slightly non-convex approximation approach by utilizing the spline interpolation based coarse-to-fine warping scheme to handle the motion discontinuities in ultrasound image. Lastly, after each warping step, we employed the bilateral filter into the numerical framework to minimize the tracking errors in motion estimates. To evaluate the tracking performance of our method, we estimated the motion fields of microbubbles for the tissue mimicking phantom, and compared its results to those of the existing methods. As a result, it was found that the proposed technique provides the most reliable motion patterns of microbubbles, and reduces computational loads, simultaneously. We also confirmed the potential usefulness of our estimation scheme for the microbubble based diagnostic analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1709-1714

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Gramiak, P. M. Shah: Invest. Radiol. Vol. 3 (1968), p.356.

Google Scholar

[2] F. W. Kremkau, R. Gramiak, E. L. Carstensen, P. M. Shah, D. H. Kramer: Am. J. Roentgenol. Vol. 110 (1970), p.177.

Google Scholar

[3] A. A. Doinikov, P. A. Dayton: J. Acoust. Soc. Am. Vol. 121 (2007), p.3331.

Google Scholar

[4] O. Couture, S. Bannouf, G. Montaldo, J. F. Aubry, M. Fink, M. Tanter: Ultrasound Med. Biol. Vol. 35 (2009), p. (1908).

DOI: 10.1016/j.ultrasmedbio.2009.05.020

Google Scholar

[5] A. Bouakaz, P. J. A. Frinking, N. de Jong, N. Bom: Ultrasound Med. Biol. Vol. 25 (1999), p.1407.

Google Scholar

[6] P. A. Dayton, K. W. Ferrara: J. Magn. Reson. Imaging Vol. 16 (2002), p.362.

Google Scholar

[7] C. K. Kuhl, P. Mielcareck, S. Klaschik, C. Leutner, E. Wardelmann, J. Gieseke, H. H. Schild: Radiology Vol. 211 (1999), p.101.

DOI: 10.1148/radiology.211.1.r99ap38101

Google Scholar

[8] A. L. Martel, M. S. Froh, K. K. Brock, D. B. Plewes, D. C. Barber: Phys. Med. Biol. Vol. 52 (2007), p.3803.

Google Scholar

[9] R. Strzodka, C. Garbe: IEEE Visualization (2004), p.545.

Google Scholar

[10] K. L. Chan: Ultrasonics Vol. 31 (1993), p.117.

Google Scholar

[11] P. Baraldi, A. Sarti, C. Lamberti, A. Prandini, F. Sqallari: IEEE Trans. Biomed. Eng. Vol. 43 (1996), p.259.

Google Scholar

[12] K. Althoff, G. Hamarneh, M. B. Suurkula, T. Gustavsson: IEEE Computers in Cardiology Vol. 27 (2000), p.29.

Google Scholar

[13] N. Malpica, A. Santos, M. A. Zuluaga, M. J. Ledesma, E. Perez, M. A. Garcia-Fernandez, M. Desco: Ultrasound Med. Biol. Vol. 30 (2004), p.303.

Google Scholar

[14] M. Mokhtar-Dizaji, M. Montazeri, H. Saberi: Ultrasound Med. Biol. Vol. 32 (2006), p.1493.

Google Scholar

[15] P. Burlina, B. Hoffmann, T. Abraham: IEEE Life Science Systems and Application Workshop (2011), p.67.

Google Scholar

[16] J. F. Aujol, G. Gilboa, T. Chan, S. Osher: Int. J. Comput. Vis. Vol. 67 (2006), p.111.

Google Scholar

[17] L. I. Rudin, S. Osher, E. Fatemi: Phys. D Vol. 60 (1992), p.259.

Google Scholar

[18] B. K. P. Horn, B. G. Schunck: Artif. Intell. Vol. 17 (1981), p.185.

Google Scholar

[19] N. Papenberg, A. Bruhn, T. Brox, S. Didas, J. Weickert: Int. J. Comput. Vis. Vol. 67 (2006), p.141.

DOI: 10.1007/s11263-005-3960-y

Google Scholar

[20] C. Liu: Doctoral Thesis, Massachusetts Institute of Technology (2009).

Google Scholar

[21] M. Drulea, S. Nedevschi: International IEEE Conference on Intelligent Transportation Systems (2011), p.318.

Google Scholar

[22] D. Sun, S. Roth, M. J. Black: IEEE Conference on Computer Vision and Pattern Recognition (2010), p.2432.

Google Scholar