Grating-Coupled Surface-Plasmon-Resonance Biosensor Discs with a C-Type Fluidic Channel for Monitoring Growth of Self-Assembled Monolayer

Article Preview

Abstract:

In this paper, we present a grating-coupled surface plasmon resonance (SPR) biosensor with a c-type fluidic channel on a grating disc. For obtaining the kinetic information of molecular interaction, we combined a c-type fluidic channel on disc to drive testing solution forward by gravity via turning the grating disc. The disc biosensor can react with probe molecules on the different sensing surfaces in the following time. The repeatability testing shows the resolution of angle of the measuring system was enhanced by threefold comparing to that without the automation improvement. In order to identify the accuracy of angle changes of SPR due to the chemical reaction on surface, experiment for monitoring a growth self-assembled monolayer (SAM) immobilized on gold surface was performed. The measured response curves show that the saturation time of the SAM formation, which thickness is smaller than 2 nm, is roughly 5 hours when 1 mM MHDA growing on gold at room temperature. The demonstration reveals that the disc biosensor with c-type fluidic channels can be a promising tool for a kinetic analysis of bimolecular interaction without any external fluid pumping systems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2069-2074

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X.D. Fan, I.M. White, S.I. Shopova, H.Y. Zhu, J.D. Suter, Y.Z. Sun, Sensitive optical biosensors for unlabeled targets: A review, Anal. Chim. Acta., 620 (2008) 8-26.

DOI: 10.1016/j.aca.2008.05.022

Google Scholar

[2] J. Homola, S.S. Yee, G. Gauglitz, Surface plasmon resonance sensors: review, Sensor Actuat. B-chem, 54 (1999) 3-15.

Google Scholar

[3] J. Dostalek, J. Homola, M. Miler, Rich information format surface plasmon resonance biosensor based on array of diffraction gratings, Sensor Actuat. B-chem, 107 (2005) 154-161.

DOI: 10.1016/j.snb.2004.08.033

Google Scholar

[4] M. Madou, J. Zoval, G.Y. Jia, H. Kido, J. Kim, N. Kim, Lab on a CD, Annu. Rev. Biomed. Eng., 8 (2006) 601-628.

DOI: 10.1146/annurev.bioeng.8.061505.095758

Google Scholar

[5] D.D. Nolte, Invited review article: Review of centrifugal microfluidic and bio-optical disks, Rev. Sci. Instrum., 80 (2009).

DOI: 10.1063/1.3236681

Google Scholar

[6] X.Y. Peng, P.C.H. Li, H.Z. Yu, M. Parameswaran, W.L. Chou, Spiral microchannels on a CD for DNA hybridizations, Sensor Actuat. B-chem, 128 (2007) 64-69.

DOI: 10.1016/j.snb.2007.05.038

Google Scholar

[7] Y.C. Li, L.M.L. Ou, H.Z. Yu, Digitized Molecular Diagnostics: Reading Disk-Based Bioassays with Standard Computer Drives, Anal. Chem., 80 (2008) 8216-8223.

DOI: 10.1021/ac8012434

Google Scholar

[8] L. Angnes, E.M. Richter, M.A. Augelli, G.H. Kume, Gold electrodes from recordable CDs, Anal. Chem., 72 (2000) 5503-5506.

DOI: 10.1021/ac000437p

Google Scholar

[9] H.Z. Yu, Self-assembly on "recordable CDs", Anal. Chem., 73 (2001) 4743-4747.

DOI: 10.1021/ac015521z

Google Scholar

[10] H.Z. Yu, New chemistry on old CDs, Chem. Commun., (2004) 2633-2636.

Google Scholar

[11] A.D. Boardman, Electromagnetic surface modes, Wiley, Chichester ; New York, 1982.

Google Scholar

[12] H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer-Verlag, Berlin, Germany, 1988.

DOI: 10.1007/bfb0048319

Google Scholar

[13] J. Dostalek, J. Homola, Surface plasmon resonance sensor based on an array of diffraction gratings for highly parallelized observation of biomolecular interactions, Sensor Actuat. B-chem, 129 (2008) 303-310.

DOI: 10.1016/j.snb.2007.08.012

Google Scholar

[14] L. Wang, P.C.H. Li, H.Z. Yu, A.M. Parameswaran, Fungal pathogenic nucleic acid detection achieved with a microfluidic microarray device, Anal. Chim. Acta., 610 (2008) 97-104.

DOI: 10.1016/j.aca.2007.12.048

Google Scholar

[15] S.-Y. Chou, W.-Y. Meng, K.-C. Chiu, C.-M. Lin, Y.-S. Lan, N.-J. Cheng, J.-N. Yih, Surface plasmon resonance biosensor based on compact discs, in: 2009 IEEE 3rd International Conference on Nano/Molecular Medicine and Engineering, NANOMED 2009, 2009, pp.231-234.

DOI: 10.1109/nanomed.2009.5559081

Google Scholar

[16] J.-N. Yih, K.-C. Chiu, S.-Y. Chou, C.-M. Lin, Y.-S. Lan, S.-J. Chen, N.-J. Cheng, Surface plasmon resonance biosensor based on grating disc with circular fluidic channel, in: NEMS 2011 - 6th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2011, pp.571-574.

DOI: 10.1109/nems.2011.6017420

Google Scholar

[17] O. Dannenberger, K. Weiss, H.J. Himmel, B. Jager, M. Buck, C. Woll, An orientation analysis of differently endgroup-functionalised alkanethiols adsorbed on Au substrates, Thin Solid Films, 307 (1997) 183-191.

DOI: 10.1016/s0040-6090(97)00280-0

Google Scholar

[18] I. Benilova, V.I. Chegel, Y.V. Ushenin, J. Vidic, A.P. Soldatkin, C. Martelet, E. Pajot, N. Jaffrezic-Renault, Stimulation of human olfactory receptor 17-40 with odorants probed by surface plasmon resonance, Eur. Biophys. J. Biophy, 37 (2008) 807-814.

DOI: 10.1007/s00249-008-0272-5

Google Scholar

[19] J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Self-assembled monolayers of thiolates on metals as a form of nanotechnology, Chem. Rev., 105 (2005) 1103-1169.

DOI: 10.1021/cr0300789

Google Scholar

[20] R.G. Nuzzo, D.L. Allara, Adsorption of Bifunctional Organic Disulfides on Gold Surfaces, J. Am. Chem. Soc., 105 (1983) 4481-4483.

DOI: 10.1021/ja00351a063

Google Scholar