Resistive Switching Characteristics in Nanocrystalline Silicon Films for Conductive-Bridging Resistive Random-Access Memory Applications

Abstract:

Article Preview

In this paper, intrinsic nanocrystalline silicon thin films were deposited onto the ITO/glass substrates by PECVD and were used as the conduction material for the conductive-bridging random-access memory devices. The resistive switching characteristics of the nanocrystalline silicon thin films were investigated. Experimental results have shown that the stable bipolar resistive switching of the nc-Si films and retention time over 104s. In addition, the current conduction mechanism of the nanocrystalline silicon films was examined with XPS depth file analysis. It clearly indicates that the conduction mechanism for the resistive switching is formation metallic bridges come form metal cation migration in the nanocrystalline silicon films.

Info:

Periodical:

Edited by:

Wen-Hsiang Hsieh

Pages:

2565-2569

DOI:

10.4028/www.scientific.net/AMM.284-287.2565

Citation:

J. Y. Lin and B. X. Wang, "Resistive Switching Characteristics in Nanocrystalline Silicon Films for Conductive-Bridging Resistive Random-Access Memory Applications", Applied Mechanics and Materials, Vols. 284-287, pp. 2565-2569, 2013

Online since:

January 2013

Export:

Price:

$35.00

[1] C.Y. Lu, K.Y. Hsieh and R. Liu: Microelectron. Eng. Vol. 86 (2007), pp.283-286.

[2] Y. Bernard, V.T. Renard, P. Gonon and V. Jousseaume: Microelectron. Eng. Vol. 88 (2011), pp.814-816.

[3] I. Valov, R. Waser, J. R. Jameson and M. N. Kozicki: Nanotechnology. Vol. 22 (2011), p.254003.

[4] S.Z. Rahaman and S. Maikap: Microelectron. Reliab. Vol. 50 (2010), pp.643-646.

[5] S.J. Choi, J.H. Lee, H.J. Bae, W.Y. Yang, T.W. Kim, and K.H. Kim: IEEE Electr. Device Lett. Vol. 30 (2009), pp.120-122.

[6] L. Goux, K. Opsomer, R. Degraeve, R. Müller, C. Detavernier, D. J. Wouters, M. Jurczak, L. Altimime, and J. A. Kittl: Appl. Phys. Lett. Vol. 99 (2011), p.053502.

DOI: 10.1063/1.3621835

[7] Y. Bernard, P. Gonon, and V. Jousseaume: Appl. Phys. Lett. Vol. 96 (2010), p.193502.

[8] Y. Tsuji, T. Sakamoto, N. Banno, H. Hada, and M. Aono: Appl. Phys. Lett. Vol. 96 (2010), p.023504.

[9] K. Tsunoda, Y. Fukuzumi, J. R. Jameson, Z. Wang, P. B. Griffin, and Y. Nishi,: Appl. Phys. Lett. Vol. 90 (2007), p.113501.

[10] H. Choi, M. Pyun, T. -W. Kim, M. Hasan, R. Dong, J. Lee, J. -B. Park,J. Yoon, D. -J. Seong, T. Lee, and H. Hwang: IEEE Electr. Device Lett. Vol. 30 (2009), pp.302-304.

DOI: 10.1109/led.2008.2012273

[11] S. H. Jo, K. -H. Kim, and W. Lu: Nano Lett. Vol. 9 (2009), pp.870-874.

[12] M. Bauza, A. Ahnood, F.M. Li, Y. Vygranenko, M.R. Esmaeili-Rad, G. Chaji, A. Sazonov, J. Robertson, W.I. Milne, A. Nathan: J. Disp. Technol. Vol. 6 (2010), pp.589-591.

DOI: 10.1109/jdt.2010.2076363

[13] S. Miyajima, J. Irikawa, A. Yamada, and M. Konagai: Appl. Phys. Lett. Vol. 97 (2010), p.023504.

[14] M. Jamei, F. Karbassian, S. Mohajerzadeh, Y. Abdi,; M.D. Robertson, S. Yuill, IEEE Electr. Device Lett. Vol. 28 (2007), pp.207-210.

[15] C. H. Kim, Y. H. Jang, H. J. Hwang, C. H. Song, Y. S. Yang, and J. H. Cho: Appl. Phys. Lett. Vol. 97 (2010), p.062109.

[16] Y. C. Yang, F. Pan, F. Zeng, and M. Liu: J. Appl. Phys. Vol. 106 (2009), p.123705.

[17] K. M. Kim, B. J. Choi, Y. C. Shin, S. C., and C. S. Hwang: Appl. Phys. Lett. Vol. 91 (2007), p.012907.

[18] C. Chen, Y. C. Yang, F. Zeng, and F. Pan: Appl. Phys. Lett. Vol. 97 (2010), p.083502.

In order to see related information, you need to Login.