Resistive Switching Characteristics in Nanocrystalline Silicon Films for Conductive-Bridging Resistive Random-Access Memory Applications

Article Preview

Abstract:

In this paper, intrinsic nanocrystalline silicon thin films were deposited onto the ITO/glass substrates by PECVD and were used as the conduction material for the conductive-bridging random-access memory devices. The resistive switching characteristics of the nanocrystalline silicon thin films were investigated. Experimental results have shown that the stable bipolar resistive switching of the nc-Si films and retention time over 104s. In addition, the current conduction mechanism of the nanocrystalline silicon films was examined with XPS depth file analysis. It clearly indicates that the conduction mechanism for the resistive switching is formation metallic bridges come form metal cation migration in the nanocrystalline silicon films.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2565-2569

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.Y. Lu, K.Y. Hsieh and R. Liu: Microelectron. Eng. Vol.86 (2007), pp.283-286

Google Scholar

[2] Y. Bernard, V.T. Renard, P. Gonon and V. Jousseaume: Microelectron. Eng.Vol.88 (2011), pp.814-816

Google Scholar

[3] I. Valov, R. Waser, J. R. Jameson and M. N. Kozicki: Nanotechnology. Vol. 22 (2011), p.254003.

DOI: 10.1088/0957-4484/22/25/254003

Google Scholar

[4] S.Z. Rahaman and S. Maikap: Microelectron. Reliab. Vol. 50 (2010), pp.643-646.

Google Scholar

[5] S.J. Choi, J.H. Lee, H.J. Bae, W.Y. Yang, T.W. Kim, and K.H. Kim: IEEE Electr. Device Lett. Vol. 30 (2009), pp.120-122

Google Scholar

[6] L. Goux, K. Opsomer, R. Degraeve, R. Müller, C. Detavernier, D. J. Wouters, M. Jurczak, L. Altimime, and J. A. Kittl: Appl. Phys. Lett. Vol. 99 (2011), p.053502

DOI: 10.1063/1.3621835

Google Scholar

[7] Y. Bernard, P. Gonon, and V. Jousseaume: Appl. Phys. Lett. Vol. 96 (2010), p.193502

Google Scholar

[8] Y. Tsuji, T. Sakamoto, N. Banno, H. Hada, and M. Aono: Appl. Phys. Lett. Vol. 96 (2010), p.023504

Google Scholar

[9] K. Tsunoda, Y. Fukuzumi, J. R. Jameson, Z. Wang, P. B. Griffin, and Y. Nishi,: Appl. Phys. Lett. Vol. 90 (2007), p.113501

Google Scholar

[10] H. Choi, M. Pyun, T.-W. Kim, M. Hasan, R. Dong, J. Lee, J.-B. Park,J. Yoon, D.-J. Seong, T. Lee, and H. Hwang: IEEE Electr. Device Lett. Vol. 30 (2009), pp.302-304

DOI: 10.1109/led.2008.2012273

Google Scholar

[11] S. H. Jo, K.-H. Kim, and W. Lu: Nano Lett. Vol. 9 (2009), pp.870-874

Google Scholar

[12] M. Bauza, A. Ahnood, F.M. Li, Y. Vygranenko, M.R. Esmaeili-Rad, G. Chaji, A. Sazonov, J. Robertson, W.I. Milne, A. Nathan: J. Disp. Technol. Vol. 6 (2010), pp.589-591

DOI: 10.1109/jdt.2010.2076363

Google Scholar

[13] S. Miyajima, J. Irikawa, A. Yamada, and M. Konagai: Appl. Phys. Lett. Vol. 97 (2010), p.023504

Google Scholar

[14] M. Jamei, F. Karbassian, S. Mohajerzadeh, Y. Abdi,; M.D. Robertson, S. Yuill, IEEE Electr. Device Lett. Vol. 28 (2007), pp.207-210

DOI: 10.1109/led.2007.891260

Google Scholar

[15] C. H. Kim, Y. H. Jang, H. J. Hwang, C. H. Song, Y. S. Yang, and J. H. Cho: Appl. Phys. Lett. Vol. 97 (2010), p.062109

Google Scholar

[16] Y. C. Yang, F. Pan, F. Zeng, and M. Liu: J. Appl. Phys. Vol. 106 (2009), p.123705

Google Scholar

[17] K. M. Kim, B. J. Choi, Y. C. Shin, S. C., and C. S. Hwang: Appl. Phys. Lett. Vol. 91 (2007), p.012907

Google Scholar

[18] C. Chen, Y. C. Yang, F. Zeng, and F. Pan: Appl. Phys. Lett. Vol. 97 (2010), p.083502

Google Scholar