[1]
Dai L. Singular Control Systems. New York: Springer-Verlag, (1989).
Google Scholar
[2]
Ishhara J Y, Terra M H. On the Lyapunov theorem for singular systems. IEEE Transactions on Automatic Control, 2002, 47(11): 1926-(1930).
DOI: 10.1109/tac.2002.804463
Google Scholar
[3]
Masubuchi I, Kamitane Y, Ohara A, Suda N, H control for descripytor systems: a matrix inequalities approach. Automatica, 1997, 33(4): 669-673.
DOI: 10.1016/s0005-1098(96)00193-8
Google Scholar
[4]
Savkin A V, Matveev A S. Cyclic linear differential automatica, 2000, 36(5): 727-734.
DOI: 10.1016/s0005-1098(99)00199-5
Google Scholar
[5]
Jeon D, Tomizuka M, Learning hybrid force and position control of robot manipulators. IEEE Transactions on Robotics and Automation, 1993, 9(4): 423-431.
DOI: 10.1109/70.246053
Google Scholar
[6]
Skafidas E, Evans R J, Savkin A V, Petersen I R. Stability results for switched controller systems, Automatica, 1999, 35(4): 553-564.
DOI: 10.1016/s0005-1098(98)00167-8
Google Scholar
[7]
Yin Yu-Juan, Zhao Jun. Stability of switched linear singular systems with impulsive effects. Acya Automatica Sinica, 2007, 33(4): 446-448.
Google Scholar
[8]
Liberzon D, Morse A S. Basic problemsin stability and design of switched and hybrid systems. IEEE Control Systems Magazine, 1999, 19(5): 59-70.
Google Scholar
[9]
Branicky M S. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Transactions on Automatic Control, 1998, 43(4): 475-482.
DOI: 10.1109/9.664150
Google Scholar
[10]
Zhao J, Dimirovski G M. Quadratic stability of a class of switched nonlinear systems. IEEE Transactions on Automatic Control, 2004, 49(4): 574-578.
DOI: 10.1109/tac.2004.825611
Google Scholar
[11]
Park P. A delay-dependent stability criterion for systems with uncertain time-invariant delays. IEEE Transactions on Automatic Control, 1999, 44(4): 876-877.
DOI: 10.1109/9.754838
Google Scholar
[12]
Moon Y S, Park P, Kwon W H, Lee Y S. Delay-dependent robust stabilization of uncertain state-delayed systems, International Journal of control, 2001, 74(14): 1447-1455.
DOI: 10.1080/00207170110067116
Google Scholar
[13]
Fridman E, Shaked U. An improved stabilization method for linear time-delay systems. IEEE Transactions on Automatic Control, 2002, 47(11): 1931-(1937).
DOI: 10.1109/tac.2002.804462
Google Scholar
[14]
Wu M, He Y, She J H, Liu G P. Delay-dependent criteria for robust stability of time-varying delay systems. Automatica, 2004, 40(8): 1435-1439.
DOI: 10.1016/j.automatica.2004.03.004
Google Scholar
[15]
Xu S Y, James L. Improved delay-dependent stability criteria for time-delay systems. IEEE Transactions on Automatic Control, 2005, 50(3): 384-387.
DOI: 10.1109/tac.2005.843873
Google Scholar
[16]
Xu S Y, James L, Zou Y . New results on delay-dependent robust H∞control for systems with time-varying delay and parameter uncertainty. IEEE Transactions on Automatic Control, 2006, 42(2): 343-348.
Google Scholar
[17]
Xu S Y, Paul V D, Stefan R, James L. Robust stability and stabilization for singular systems with state delay and parameter uncertainty. IEEE Transactions on Automatic Control, 2002, 47(7): 1122-1128.
DOI: 10.1109/tac.2002.800651
Google Scholar
[18]
Xie L H. Output feedback H∞control of systems with parameter uncertainty. International journal of control, 1996, 63(4): 741-750.
DOI: 10.1080/00207179608921866
Google Scholar