The Asymptotical Stability Analysis for Switched Descriptor Systems

Article Preview

Abstract:

This paper is concerned with the asymptotical stability analysis for a class of switched uncertain descriptor systems with time-delay. The robustly asymptotical stability of this system is proven by making use of the generalized Lyapunov Stability theory, linear matrix inequality (LMI) tools and multiple Lyapunov function techniques. The conservation of result is greatly reduced by means of introducing the optimal weight matrix and avoiding vector matrix inequality in deducing procedure, in which there is no need of transformation and hypothesis for descriptor systems. The designed control law could surely make switched Descriptor Systems quickly approach the balanceable point. Experimentally, one numerical simulation verifies the effectiveness of this method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2150-2156

Citation:

Online since:

August 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Dai L. Singular Control Systems. New York: Springer-Verlag, (1989).

Google Scholar

[2] Ishhara J Y, Terra M H. On the Lyapunov theorem for singular systems. IEEE Transactions on Automatic Control, 2002, 47(11): 1926-(1930).

DOI: 10.1109/tac.2002.804463

Google Scholar

[3] Masubuchi I, Kamitane Y, Ohara A, Suda N, H control for descripytor systems: a matrix inequalities approach. Automatica, 1997, 33(4): 669-673.

DOI: 10.1016/s0005-1098(96)00193-8

Google Scholar

[4] Savkin A V, Matveev A S. Cyclic linear differential automatica, 2000, 36(5): 727-734.

DOI: 10.1016/s0005-1098(99)00199-5

Google Scholar

[5] Jeon D, Tomizuka M, Learning hybrid force and position control of robot manipulators. IEEE Transactions on Robotics and Automation, 1993, 9(4): 423-431.

DOI: 10.1109/70.246053

Google Scholar

[6] Skafidas E, Evans R J, Savkin A V, Petersen I R. Stability results for switched controller systems, Automatica, 1999, 35(4): 553-564.

DOI: 10.1016/s0005-1098(98)00167-8

Google Scholar

[7] Yin Yu-Juan, Zhao Jun. Stability of switched linear singular systems with impulsive effects. Acya Automatica Sinica, 2007, 33(4): 446-448.

Google Scholar

[8] Liberzon D, Morse A S. Basic problemsin stability and design of switched and hybrid systems. IEEE Control Systems Magazine, 1999, 19(5): 59-70.

Google Scholar

[9] Branicky M S. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Transactions on Automatic Control, 1998, 43(4): 475-482.

DOI: 10.1109/9.664150

Google Scholar

[10] Zhao J, Dimirovski G M. Quadratic stability of a class of switched nonlinear systems. IEEE Transactions on Automatic Control, 2004, 49(4): 574-578.

DOI: 10.1109/tac.2004.825611

Google Scholar

[11] Park P. A delay-dependent stability criterion for systems with uncertain time-invariant delays. IEEE Transactions on Automatic Control, 1999, 44(4): 876-877.

DOI: 10.1109/9.754838

Google Scholar

[12] Moon Y S, Park P, Kwon W H, Lee Y S. Delay-dependent robust stabilization of uncertain state-delayed systems, International Journal of control, 2001, 74(14): 1447-1455.

DOI: 10.1080/00207170110067116

Google Scholar

[13] Fridman E, Shaked U. An improved stabilization method for linear time-delay systems. IEEE Transactions on Automatic Control, 2002, 47(11): 1931-(1937).

DOI: 10.1109/tac.2002.804462

Google Scholar

[14] Wu M, He Y, She J H, Liu G P. Delay-dependent criteria for robust stability of time-varying delay systems. Automatica, 2004, 40(8): 1435-1439.

DOI: 10.1016/j.automatica.2004.03.004

Google Scholar

[15] Xu S Y, James L. Improved delay-dependent stability criteria for time-delay systems. IEEE Transactions on Automatic Control, 2005, 50(3): 384-387.

DOI: 10.1109/tac.2005.843873

Google Scholar

[16] Xu S Y, James L, Zou Y . New results on delay-dependent robust H∞control for systems with time-varying delay and parameter uncertainty. IEEE Transactions on Automatic Control, 2006, 42(2): 343-348.

Google Scholar

[17] Xu S Y, Paul V D, Stefan R, James L. Robust stability and stabilization for singular systems with state delay and parameter uncertainty. IEEE Transactions on Automatic Control, 2002, 47(7): 1122-1128.

DOI: 10.1109/tac.2002.800651

Google Scholar

[18] Xie L H. Output feedback H∞control of systems with parameter uncertainty. International journal of control, 1996, 63(4): 741-750.

DOI: 10.1080/00207179608921866

Google Scholar