[1]
S.D. Senturia: Simulation and design of microsystems: a 10-year preserve, Sens. Actuators A, 67, 1-7 (1998).
Google Scholar
[2]
S.E. Lyshevski: Nonlinear microelectromechanic systems (MEMS) analysis and design via the Lyapunov stability theory, in: Proceeding of the 40th IEEE Conference on Decision and Control Orlando, FL USA, pp.4681-4686 (1997).
DOI: 10.1109/cdc.2001.980945
Google Scholar
[3]
S.K. De, N.R. Aluru: Complex nonlinear oscillations in electrostatically actuated microstructures, J. Microelectromech. Systems, 15, 355-369 (2006).
DOI: 10.1109/jmems.2006.872227
Google Scholar
[4]
M. Ashhab, M.V. Salapaka, M. Dahleh, I. Mezic: Dynamic analysis and control of microcantilevers, Automatica, 35, 1663-1670 (1999).
DOI: 10.1016/s0005-1098(99)00077-1
Google Scholar
[5]
A. Passiana, G. Muralidharana, A. Mehtaa, H. Simpsonb, T.L. Ferrella and T. Thundat: Manipulation of microcantilever oscillations, Ultramicroscopy, 97, 391-399 (2003).
DOI: 10.1016/s0304-3991(03)00066-4
Google Scholar
[6]
Y. Ahn, H. Guckel and J.D. Zook: Capacitive microbeam resonator design, J. Micromech. Microeng, 11, 70-80 (2001).
DOI: 10.1088/0960-1317/11/1/311
Google Scholar
[7]
E.K. Chan, W. Robert Dutton: Electrostatic micromechanical actuator with extended range of travel, J. Microelectromech. Syst., 9(3), 321-328 (2000).
DOI: 10.1109/84.870058
Google Scholar
[8]
S. N. Mahmoodi, N. Jalili: Piezoelectrically actuated microcantilevers: An experimental nonlinear vibration analysis, Sens. Actuators A, 150, 131-136 (2009).
DOI: 10.1016/j.sna.2008.12.013
Google Scholar
[9]
Y.M. Fu, J. Zhang: *onlinear static and dynamic response of an electrically actuated viscoelastic microbeam, Acta Mechanica Sinica, 25, 211-218 (2009).
DOI: 10.1007/s10409-008-0216-4
Google Scholar
[10]
S. Liu, A. Davidson and Q. Liu: Simulating nonlinear dynamics and chaos in a MEMS cantilever using Poincare mapping, in: Proceedings of the IEEE, Transducers'03, the 12th International Conference on Solid State Sensors Actuators and Microsystems, Boston, 8-12 June 2003, pp.1092-1095.
DOI: 10.1109/sensor.2003.1216959
Google Scholar
[11]
S. Liu, A. Davidson and Q. Liu: Simulation studies on nonlinear dynamics and chaos in a MEMS cantilever control system, J. Micromech. Microeng., 14, 1064-1073 (2004).
DOI: 10.1088/0960-1317/14/7/029
Google Scholar
[12]
W.M. Zhang, G. Meng and D. Chen: Stability, nonlinearity and reliability of electrostatically actuated MEMS devices, Sens., 7, 760-796 (2007).
DOI: 10.3390/s7050760
Google Scholar
[13]
G. Meng, W.M. Zhang, H. Huang, et al.: Micro-rotor dynamics for micro-electro-mechanical systems (MEMS), Chaos, Solitons Fractals, 40, 538-562 (2009).
DOI: 10.1016/j.chaos.2007.08.003
Google Scholar
[14]
W.M. Zhang, G. Meng: *onlinear dynamical system of micro-cantilever under combined parametric and forcing excitations in MEMS, Sens. Actuators A, 119, 291-299 (2005).
DOI: 10.1016/j.sna.2004.09.025
Google Scholar
[15]
R.H. Price, J.E. Wood and S.C. Jacobsen: Modeling considerations for electrostatic forces in electrostatic microactuators, Sens. Actuators A, 20, 107-114 (1989).
DOI: 10.1016/0250-6874(89)87108-2
Google Scholar
[16]
M. Feigenbaum: Qualitative universality for a chaos of nonlinear transformations, T. Stat. Phys., 19, 5~32 (1978).
Google Scholar