[1]
Y.J. Lou, G.F. Liu, Z.X. Li, Optimal Design of Parallel Manipulators via LMI Approach, Proceedings of IEEE International Conference on Robotics and Automation, Vol. 2, pp.1869-1874, (2003).
DOI: 10.1109/robot.2003.1241867
Google Scholar
[2]
J.P. Merlet, D. Daney, Appropriate Design of Parallel Manipulators, Smart Devices and Machines for Advanced Manufacturing, Springer, London, (2008).
DOI: 10.1007/978-1-84800-147-3_1
Google Scholar
[3]
X.J. Liu, Optimal kinematic design of a three translational DoFs parallel manipulator, Robotica, Vol. 24, No. 2, pp.239-250, (2006).
DOI: 10.1017/s0263574705002079
Google Scholar
[4]
G. Nawratil, New performance indices for 6-dof UPS and 3-dof RPR parallel manipulators, Mechanism and Machine Theory, Vol. 44, No. 1, pp.208-221, (2009).
DOI: 10.1016/j.mechmachtheory.2008.02.004
Google Scholar
[5]
W. Wang, H.Y. Yang, J. Zou, et al, Optimal design of Stewart platforms based on expanding the control bandwidth while considering the hydraulic system design, Journal of Zhejiang University Science A, Vol. 10, No. 1, pp.1862-1775, (2009).
DOI: 10.1631/jzus.a0820329
Google Scholar
[6]
F. Hao, J.P. Merlet, Multi-criteria optimal design of parallel manipulators based on interval analysis, Mechanism and Machine Theory, Vol. 40, No. 2, pp.157-171, (2005).
DOI: 10.1016/j.mechmachtheory.2004.07.002
Google Scholar
[7]
Z. Gao, D. Zhang, Y.J. Ge, Design optimization of a spatial six degree-of-freedom parallel manipulator based on artificial intelligence approaches, Robotics and Computer-Integrated Manufacturing, Vol. 26, No. 2, pp.180-189, (2010).
DOI: 10.1016/j.rcim.2009.07.002
Google Scholar
[8]
P. Mukherjee, B. Dasgupta, A.K. Mallik, Dynamic stability index and vibration analysis of a flexible Stewart platform, Journal of sound and vibration, Vol. 307, No. 3-5, 495-512, (2007).
DOI: 10.1016/j.jsv.2007.05.036
Google Scholar
[9]
J.K. Slisbury, J.J. Craig, Articulated hands: force control and kinematic issues, International Journal of Robotics Research, Vol. 1, No. 1, pp.4-17, (1982).
Google Scholar
[10]
G. Pond, J.A. Carretero, Formulating Jacobian matrices for the dexterity analysis of parallel manipulators, Mechanism and Machine Theory, Vol. 41, No. 12, pp.1505-1519, (2006).
DOI: 10.1016/j.mechmachtheory.2006.01.003
Google Scholar
[11]
S.G. Kim, J. Ryu, New dimensionally homogeneous jacobian matrix formulation by three end-effector points for optimal design of parallel manipulators, IEEE Transactions on Robotics and Automation, Vol. 19, No. 4, pp.731-736, (2003).
DOI: 10.1109/tra.2003.814496
Google Scholar